mmdet.apis¶
- class mmdet.apis.DetInferencer(model: Optional[Union[dict, Config, ConfigDict, str]] = None, weights: Optional[str] = None, device: Optional[str] = None, scope: Optional[str] = 'mmdet', palette: str = 'none', show_progress: bool = True)[source]¶
Object Detection Inferencer.
- Parameters
model (str, optional) – Path to the config file or the model name defined in metafile. For example, it could be “rtmdet-s” or ‘rtmdet_s_8xb32-300e_coco’ or “configs/rtmdet/rtmdet_s_8xb32-300e_coco.py”. If model is not specified, user must provide the weights saved by MMEngine which contains the config string. Defaults to None.
weights (str, optional) – Path to the checkpoint. If it is not specified and model is a model name of metafile, the weights will be loaded from metafile. Defaults to None.
device (str, optional) – Device to run inference. If None, the available device will be automatically used. Defaults to None.
scope (str, optional) – The scope of the model. Defaults to mmdet.
palette (str) – Color palette used for visualization. The order of priority is palette -> config -> checkpoint. Defaults to ‘none’.
show_progress (bool) – Control whether to display the progress bar during the inference process. Defaults to True.
- postprocess(preds: List[DetDataSample], visualization: Optional[List[ndarray]] = None, return_datasamples: bool = False, print_result: bool = False, no_save_pred: bool = False, pred_out_dir: str = '', **kwargs) Dict [source]¶
Process the predictions and visualization results from
forward
andvisualize
.This method should be responsible for the following tasks:
Convert datasamples into a json-serializable dict if needed.
Pack the predictions and visualization results and return them.
Dump or log the predictions.
- Parameters
preds (List[
DetDataSample
]) – Predictions of the model.visualization (Optional[np.ndarray]) – Visualized predictions.
return_datasamples (bool) – Whether to use Datasample to store inference results. If False, dict will be used.
print_result (bool) – Whether to print the inference result w/o visualization to the console. Defaults to False.
no_save_pred (bool) – Whether to force not to save prediction results. Defaults to False.
pred_out_dir – Dir to save the inference results w/o visualization. If left as empty, no file will be saved. Defaults to ‘’.
- Returns
Inference and visualization results with key
predictions
andvisualization
.visualization
(Any): Returned byvisualize()
.predictions
(dict or DataSample): Returned byforward()
and processed inpostprocess()
. Ifreturn_datasamples=False
, it usually should be a json-serializable dict containing only basic data elements such as strings and numbers.
- Return type
dict
- pred2dict(data_sample: DetDataSample, pred_out_dir: str = '') Dict [source]¶
Extract elements necessary to represent a prediction into a dictionary.
It’s better to contain only basic data elements such as strings and numbers in order to guarantee it’s json-serializable.
- Parameters
data_sample (
DetDataSample
) – Predictions of the model.pred_out_dir – Dir to save the inference results w/o visualization. If left as empty, no file will be saved. Defaults to ‘’.
- Returns
Prediction results.
- Return type
dict
- preprocess(inputs: Union[str, ndarray, Sequence[Union[str, ndarray]]], batch_size: int = 1, **kwargs)[source]¶
Process the inputs into a model-feedable format.
Customize your preprocess by overriding this method. Preprocess should return an iterable object, of which each item will be used as the input of
model.test_step
.BaseInferencer.preprocess
will return an iterable chunked data, which will be used in __call__ like this:def __call__(self, inputs, batch_size=1, **kwargs): chunked_data = self.preprocess(inputs, batch_size, **kwargs) for batch in chunked_data: preds = self.forward(batch, **kwargs)
- Parameters
inputs (InputsType) – Inputs given by user.
batch_size (int) – batch size. Defaults to 1.
- Yields
Any – Data processed by the
pipeline
andcollate_fn
.
- visualize(inputs: Union[str, ndarray, Sequence[Union[str, ndarray]]], preds: List[DetDataSample], return_vis: bool = False, show: bool = False, wait_time: int = 0, draw_pred: bool = True, pred_score_thr: float = 0.3, no_save_vis: bool = False, img_out_dir: str = '', **kwargs) Optional[List[ndarray]] [source]¶
Visualize predictions.
- Parameters
inputs (List[Union[str, np.ndarray]]) – Inputs for the inferencer.
preds (List[
DetDataSample
]) – Predictions of the model.return_vis (bool) – Whether to return the visualization result. Defaults to False.
show (bool) – Whether to display the image in a popup window. Defaults to False.
wait_time (float) – The interval of show (s). Defaults to 0.
draw_pred (bool) – Whether to draw predicted bounding boxes. Defaults to True.
pred_score_thr (float) – Minimum score of bboxes to draw. Defaults to 0.3.
no_save_vis (bool) – Whether to force not to save prediction vis results. Defaults to False.
img_out_dir (str) – Output directory of visualization results. If left as empty, no file will be saved. Defaults to ‘’.
- Returns
Returns visualization results only if applicable.
- Return type
List[np.ndarray] or None
- async mmdet.apis.async_inference_detector(model, imgs)[source]¶
Async inference image(s) with the detector.
- Parameters
model (nn.Module) – The loaded detector.
img (str | ndarray) – Either image files or loaded images.
- Returns
Awaitable detection results.
- mmdet.apis.inference_detector(model: Module, imgs: Union[str, ndarray, Sequence[str], Sequence[ndarray]], test_pipeline: Optional[Compose] = None, text_prompt: Optional[str] = None, custom_entities: bool = False) Union[DetDataSample, List[DetDataSample]] [source]¶
Inference image(s) with the detector.
- Parameters
model (nn.Module) – The loaded detector.
imgs (str, ndarray, Sequence[str/ndarray]) – Either image files or loaded images.
test_pipeline (
Compose
) – Test pipeline.
- Returns
If imgs is a list or tuple, the same length list type results will be returned, otherwise return the detection results directly.
- Return type
DetDataSample
or list[DetDataSample
]
- mmdet.apis.inference_mot(model: Module, img: ndarray, frame_id: int, video_len: int) List[DetDataSample] [source]¶
Inference image(s) with the mot model.
- Parameters
model (nn.Module) – The loaded mot model.
img (np.ndarray) – Loaded image.
frame_id (int) – frame id.
video_len (int) – demo video length
- Returns
The tracking data samples.
- Return type
SampleList
- mmdet.apis.init_detector(config: Union[str, Path, Config], checkpoint: Optional[str] = None, palette: str = 'none', device: str = 'cuda:0', cfg_options: Optional[dict] = None) Module [source]¶
Initialize a detector from config file.
- Parameters
config (str,
Path
, ormmengine.Config
) – Config file path,Path
, or the config object.checkpoint (str, optional) – Checkpoint path. If left as None, the model will not load any weights.
palette (str) – Color palette used for visualization. If palette is stored in checkpoint, use checkpoint’s palette first, otherwise use externally passed palette. Currently, supports ‘coco’, ‘voc’, ‘citys’ and ‘random’. Defaults to none.
device (str) – The device where the anchors will be put on. Defaults to cuda:0.
cfg_options (dict, optional) – Options to override some settings in the used config.
- Returns
The constructed detector.
- Return type
nn.Module
- mmdet.apis.init_track_model(config: Union[str, Config], checkpoint: Optional[str] = None, detector: Optional[str] = None, reid: Optional[str] = None, device: str = 'cuda:0', cfg_options: Optional[dict] = None) Module [source]¶
Initialize a model from config file.
- Parameters
config (str or
mmengine.Config
) – Config file path or the config object.checkpoint (Optional[str], optional) – Checkpoint path. Defaults to None.
detector (Optional[str], optional) – Detector Checkpoint path, use in some tracking algorithms like sort. Defaults to None.
reid (Optional[str], optional) – Reid checkpoint path. use in some tracking algorithms like sort. Defaults to None.
device (str, optional) – The device that the model inferences on. Defaults to cuda:0.
cfg_options (Optional[dict], optional) – Options to override some settings in the used config. Defaults to None.
- Returns
The constructed model.
- Return type
nn.Module
mmdet.datasets¶
datasets¶
- class mmdet.datasets.ADE20KInstanceDataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
- class mmdet.datasets.ADE20KPanopticDataset(ann_file: str = '', metainfo: Optional[dict] = None, data_root: Optional[str] = None, data_prefix: dict = {'ann': None, 'img': None, 'seg': None}, filter_cfg: Optional[dict] = None, indices: Optional[Union[int, Sequence[int]]] = None, serialize_data: bool = True, pipeline: List[Union[dict, Callable]] = [], test_mode: bool = False, lazy_init: bool = False, max_refetch: int = 1000, backend_args: Optional[dict] = None, **kwargs)[source]¶
- class mmdet.datasets.ADE20KSegDataset(img_suffix='.jpg', seg_map_suffix='.png', return_classes=False, **kwargs)[source]¶
ADE20K dataset.
In segmentation map annotation for ADE20K, 0 stands for background, which is not included in 150 categories. The
img_suffix
is fixed to ‘.jpg’, andseg_map_suffix
is fixed to ‘.png’.
- class mmdet.datasets.AspectRatioBatchSampler(sampler: Sampler, batch_size: int, drop_last: bool = False)[source]¶
A sampler wrapper for grouping images with similar aspect ratio (< 1 or.
>= 1) into a same batch.
- Parameters
sampler (Sampler) – Base sampler.
batch_size (int) – Size of mini-batch.
drop_last (bool) – If
True
, the sampler will drop the last batch if its size would be less thanbatch_size
.
- class mmdet.datasets.BaseDetDataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
Base dataset for detection.
- Parameters
proposal_file (str, optional) – Proposals file path. Defaults to None.
file_client_args (dict) – Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
return_classes (bool) – Whether to return class information for open vocabulary-based algorithms. Defaults to False.
caption_prompt (dict, optional) – Prompt for captioning. Defaults to None.
- full_init() None [source]¶
Load annotation file and set
BaseDataset._fully_initialized
to True.If
lazy_init=False
,full_init
will be called during the instantiation andself._fully_initialized
will be set to True. Ifobj._fully_initialized=False
, the class method decorated byforce_full_init
will callfull_init
automatically.Several steps to initialize annotation:
load_data_list: Load annotations from annotation file.
load_proposals: Load proposals from proposal file, if self.proposal_file is not None.
filter data information: Filter annotations according to filter_cfg.
slice_data: Slice dataset according to
self._indices
serialize_data: Serialize
self.data_list
if
self.serialize_data
is True.
- get_cat_ids(idx: int) List[int] [source]¶
Get COCO category ids by index.
- Parameters
idx (int) – Index of data.
- Returns
All categories in the image of specified index.
- Return type
List[int]
- load_proposals() None [source]¶
Load proposals from proposals file.
The proposals_list should be a dict[img_path: proposals] with the same length as data_list. And the proposals should be a dict or
InstanceData
usually contains following keys.bboxes (np.ndarry): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
scores (np.ndarry): Classification scores, has a shape (num_instance, ).
- class mmdet.datasets.BaseSegDataset(ann_file: str = '', img_suffix='.jpg', seg_map_suffix='.png', metainfo: Optional[dict] = None, data_root: Optional[str] = None, data_prefix: dict = {'img_path': '', 'seg_map_path': ''}, filter_cfg: Optional[dict] = None, indices: Optional[Union[int, Sequence[int]]] = None, serialize_data: bool = True, pipeline: List[Union[dict, Callable]] = [], test_mode: bool = False, lazy_init: bool = False, use_label_map: bool = False, max_refetch: int = 1000, backend_args: Optional[dict] = None)[source]¶
Custom dataset for semantic segmentation. An example of file structure is as followed.
├── data │ ├── my_dataset │ │ ├── img_dir │ │ │ ├── train │ │ │ │ ├── xxx{img_suffix} │ │ │ │ ├── yyy{img_suffix} │ │ │ │ ├── zzz{img_suffix} │ │ │ ├── val │ │ ├── ann_dir │ │ │ ├── train │ │ │ │ ├── xxx{seg_map_suffix} │ │ │ │ ├── yyy{seg_map_suffix} │ │ │ │ ├── zzz{seg_map_suffix} │ │ │ ├── val
The img/gt_semantic_seg pair of BaseSegDataset should be of the same except suffix. A valid img/gt_semantic_seg filename pair should be like
xxx{img_suffix}
andxxx{seg_map_suffix}
(extension is also included in the suffix). If split is given, thenxxx
is specified in txt file. Otherwise, all files inimg_dir/``and ``ann_dir
will be loaded. Please refer todocs/en/tutorials/new_dataset.md
for more details.- Parameters
ann_file (str) – Annotation file path. Defaults to ‘’.
metainfo (dict, optional) – Meta information for dataset, such as specify classes to load. Defaults to None.
data_root (str, optional) – The root directory for
data_prefix
andann_file
. Defaults to None.data_prefix (dict, optional) – Prefix for training data. Defaults to dict(img_path=None, seg_map_path=None).
img_suffix (str) – Suffix of images. Default: ‘.jpg’
seg_map_suffix (str) – Suffix of segmentation maps. Default: ‘.png’
filter_cfg (dict, optional) – Config for filter data. Defaults to None.
indices (int or Sequence[int], optional) – Support using first few data in annotation file to facilitate training/testing on a smaller dataset. Defaults to None which means using all
data_infos
.serialize_data (bool, optional) – Whether to hold memory using serialized objects, when enabled, data loader workers can use shared RAM from master process instead of making a copy. Defaults to True.
pipeline (list, optional) – Processing pipeline. Defaults to [].
test_mode (bool, optional) –
test_mode=True
means in test phase. Defaults to False.lazy_init (bool, optional) – Whether to load annotation during instantiation. In some cases, such as visualization, only the meta information of the dataset is needed, which is not necessary to load annotation file.
Basedataset
can skip load annotations to save time by setlazy_init=True
. Defaults to False.use_label_map (bool, optional) – Whether to use label map. Defaults to False.
max_refetch (int, optional) – If
Basedataset.prepare_data
get a None img. The maximum extra number of cycles to get a valid image. Defaults to 1000.backend_args (dict, Optional) – Arguments to instantiate a file backend. See https://onedl-mmengine.readthedocs.io/en/latest/api/fileio.htm for details. Defaults to None. Notes: mmcv>=2.0.0rc4 required.
- classmethod get_label_map(new_classes: Optional[Sequence] = None) Optional[Dict] [source]¶
Require label mapping.
The
label_map
is a dictionary, its keys are the old label ids and its values are the new label ids, and is used for changing pixel labels in load_annotations. If and only if old classes in cls.METAINFO is not equal to new classes in self._metainfo and nether of them is not None, label_map is not None.- Parameters
new_classes (list, tuple, optional) – The new classes name from metainfo. Default to None.
- Returns
- The mapping from old classes in cls.METAINFO to
new classes in self._metainfo
- Return type
dict, optional
- class mmdet.datasets.BaseVideoDataset(*args, backend_args: Optional[dict] = None, **kwargs)[source]¶
Base video dataset for VID, MOT and VIS tasks.
- filter_data() List[int] [source]¶
Filter image annotations according to filter_cfg.
- Returns
Filtered results.
- Return type
list[int]
- get_cat_ids(index) List[int] [source]¶
Following image detection, we provide this interface function. Get category ids by video index and frame index.
- Parameters
index –
The index of the dataset. It support two kinds of inputs: Tuple:
video_idx (int): Index of video. frame_idx (int): Index of frame.
Int: Index of video.
- Returns
All categories in the image of specified video index and frame index.
- Return type
List[int]
- get_len_per_video(idx)[source]¶
Get length of one video.
- Parameters
idx (int) – Index of video.
- Returns
The length of the video.
- Return type
int (int)
- load_data_list() Tuple[List[dict], List] [source]¶
Load annotations from an annotation file named as
self.ann_file
.- Returns
A list of annotation and a list of valid data indices.
- Return type
tuple(list[dict], list)
- property num_all_imgs¶
Get the number of all the images in this video dataset.
- parse_data_info(raw_data_info: dict) dict [source]¶
Parse raw annotation to target format.
- Parameters
raw_data_info (dict) – Raw data information loaded from
ann_file
.- Returns
Parsed annotation.
- Return type
dict
- prepare_data(idx) Any [source]¶
Get date processed by
self.pipeline
. Note thatidx
is a video index in default since the base element of video dataset is a video. However, in some cases, we need to specific both the video index and frame index. For example, in traing mode, we may want to sample the specific frames and all the frames must be sampled once in a epoch; in test mode, we may want to output data of a single image rather than the whole video for saving memory.- Parameters
idx (int) – The index of
data_info
.- Returns
Depends on
self.pipeline
.- Return type
Any
- class mmdet.datasets.CityscapesDataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
Dataset for Cityscapes.
- class mmdet.datasets.ClassAwareSampler(dataset: BaseDataset, seed: Optional[int] = None, num_sample_class: int = 1)[source]¶
Sampler that restricts data loading to the label of the dataset.
A class-aware sampling strategy to effectively tackle the non-uniform class distribution. The length of the training data is consistent with source data. Simple improvements based on Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
The implementation logic is referred to https://github.com/Sense-X/TSD/blob/master/mmdet/datasets/samplers/distributed_classaware_sampler.py
- Parameters
dataset – Dataset used for sampling.
seed (int, optional) – random seed used to shuffle the sampler. This number should be identical across all processes in the distributed group. Defaults to None.
num_sample_class (int) – The number of samples taken from each per-label list. Defaults to 1.
- class mmdet.datasets.CocoCaptionDataset(ann_file: Optional[str] = '', metainfo: Optional[Union[Mapping, Config]] = None, data_root: Optional[str] = '', data_prefix: dict = {'img_path': ''}, filter_cfg: Optional[dict] = None, indices: Optional[Union[int, Sequence[int]]] = None, serialize_data: bool = True, pipeline: List[Union[dict, Callable]] = [], test_mode: bool = False, lazy_init: bool = False, max_refetch: int = 1000)[source]¶
COCO2014 Caption dataset.
- class mmdet.datasets.CocoDataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
Dataset for COCO.
- filter_data() List[dict] [source]¶
Filter annotations according to filter_cfg.
- Returns
Filtered results.
- Return type
List[dict]
- class mmdet.datasets.CocoPanopticDataset(ann_file: str = '', metainfo: Optional[dict] = None, data_root: Optional[str] = None, data_prefix: dict = {'ann': None, 'img': None, 'seg': None}, filter_cfg: Optional[dict] = None, indices: Optional[Union[int, Sequence[int]]] = None, serialize_data: bool = True, pipeline: List[Union[dict, Callable]] = [], test_mode: bool = False, lazy_init: bool = False, max_refetch: int = 1000, backend_args: Optional[dict] = None, **kwargs)[source]¶
Coco dataset for Panoptic segmentation.
The annotation format is shown as follows. The ann field is optional for testing.
[ { 'filename': f'{image_id:012}.png', 'image_id':9 'segments_info': [ { 'id': 8345037, (segment_id in panoptic png, convert from rgb) 'category_id': 51, 'iscrowd': 0, 'bbox': (x1, y1, w, h), 'area': 24315 }, ... ] }, ... ]
- Parameters
ann_file (str) – Annotation file path. Defaults to ‘’.
metainfo (dict, optional) – Meta information for dataset, such as class information. Defaults to None.
data_root (str, optional) – The root directory for
data_prefix
andann_file
. Defaults to None.data_prefix (dict, optional) – Prefix for training data. Defaults to
dict(img=None, ann=None, seg=None)
. The prefixseg
which is for panoptic segmentation map must be not None.filter_cfg (dict, optional) – Config for filter data. Defaults to None.
indices (int or Sequence[int], optional) – Support using first few data in annotation file to facilitate training/testing on a smaller dataset. Defaults to None which means using all
data_infos
.serialize_data (bool, optional) – Whether to hold memory using serialized objects, when enabled, data loader workers can use shared RAM from master process instead of making a copy. Defaults to True.
pipeline (list, optional) – Processing pipeline. Defaults to [].
test_mode (bool, optional) –
test_mode=True
means in test phase. Defaults to False.lazy_init (bool, optional) – Whether to load annotation during instantiation. In some cases, such as visualization, only the meta information of the dataset is needed, which is not necessary to load annotation file.
Basedataset
can skip load annotations to save time by setlazy_init=False
. Defaults to False.max_refetch (int, optional) – If
Basedataset.prepare_data
get a None img. The maximum extra number of cycles to get a valid image. Defaults to 1000.
- COCOAPI¶
alias of
COCOPanoptic
- class mmdet.datasets.CocoSegDataset(img_suffix='.jpg', seg_map_suffix='.png', return_classes=False, **kwargs)[source]¶
COCO dataset.
In segmentation map annotation for COCO. The
img_suffix
is fixed to ‘.jpg’, andseg_map_suffix
is fixed to ‘.png’.
- class mmdet.datasets.ConcatDataset(datasets: Sequence[Union[BaseDataset, dict]], lazy_init: bool = False, ignore_keys: Optional[Union[str, List[str]]] = None)[source]¶
A wrapper of concatenated dataset.
Same as
torch.utils.data.dataset.ConcatDataset
, support lazy_init and get_dataset_source.Note
ConcatDataset
should not inherit fromBaseDataset
sinceget_subset
andget_subset_
could produce ambiguous meaning sub-dataset which conflicts with original dataset. If you want to use a sub-dataset ofConcatDataset
, you should setindices
arguments for wrapped dataset which inherit fromBaseDataset
.- Parameters
datasets (Sequence[BaseDataset] or Sequence[dict]) – A list of datasets which will be concatenated.
lazy_init (bool, optional) – Whether to load annotation during instantiation. Defaults to False.
ignore_keys (List[str] or str) – Ignore the keys that can be unequal in dataset.metainfo. Defaults to None. New in version 0.3.0.
- class mmdet.datasets.CrowdHumanDataset(data_root, ann_file, extra_ann_file=None, **kwargs)[source]¶
Dataset for CrowdHuman.
- Parameters
data_root (str) – The root directory for
data_prefix
andann_file
.ann_file (str) – Annotation file path.
extra_ann_file (str | optional) – The path of extra image metas for CrowdHuman. It can be created by CrowdHumanDataset automatically or by tools/misc/get_crowdhuman_id_hw.py manually. Defaults to None.
- class mmdet.datasets.CustomSampleSizeSampler(dataset: Sized, dataset_size: Sequence[int], ratio_mode: bool = False, seed: Optional[int] = None, round_up: bool = True)[source]¶
- class mmdet.datasets.DODDataset(*args, data_root: Optional[str] = '', data_prefix: dict = {'img_path': ''}, **kwargs)[source]¶
- load_data_list() List[dict] [source]¶
Load annotations from an annotation file named as
self.ann_file
If the annotation file does not follow OpenMMLab 2.0 format dataset . The subclass must override this method for load annotations. The meta information of annotation file will be overwritten
METAINFO
andmetainfo
argument of constructor.- Returns
A list of annotation.
- Return type
list[dict]
- class mmdet.datasets.DSDLDetDataset(with_bbox: bool = True, with_polygon: bool = False, with_mask: bool = False, with_imagelevel_label: bool = False, with_hierarchy: bool = False, specific_key_path: dict = {}, pre_transform: dict = {}, **kwargs)[source]¶
Dataset for dsdl detection.
- Parameters
with_bbox (bool) – Load bbox or not, defaults to be True.
with_polygon (bool) – Load polygon or not, defaults to be False.
with_mask (bool) – Load seg map mask or not, defaults to be False.
with_imagelevel_label (bool) – Load image level label or not, defaults to be False.
with_hierarchy (bool) – Load hierarchy information or not, defaults to be False.
specific_key_path (dict) – Path of specific key which can not be loaded by it’s field name.
pre_transform (dict) – pre-transform functions before loading.
- class mmdet.datasets.DeepFashionDataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
Dataset for DeepFashion.
- class mmdet.datasets.Flickr30kDataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
Flickr30K Dataset.
- load_data_list() List[dict] [source]¶
Load annotations from an annotation file named as
self.ann_file
If the annotation file does not follow OpenMMLab 2.0 format dataset . The subclass must override this method for load annotations. The meta information of annotation file will be overwritten
METAINFO
andmetainfo
argument of constructor.- Returns
A list of annotation.
- Return type
list[dict]
- class mmdet.datasets.GroupMultiSourceSampler(dataset: BaseDataset, batch_size: int, source_ratio: List[Union[int, float]], shuffle: bool = True, seed: Optional[int] = None)[source]¶
Group Multi-Source Infinite Sampler.
According to the sampling ratio, sample data from different datasets but the same group to form batches.
- Parameters
dataset (Sized) – The dataset.
batch_size (int) – Size of mini-batch.
source_ratio (list[int | float]) – The sampling ratio of different source datasets in a mini-batch.
shuffle (bool) – Whether shuffle the dataset or not. Defaults to True.
seed (int, optional) – Random seed. If None, set a random seed. Defaults to None.
- mmdet.datasets.LVISDataset¶
alias of
LVISV05Dataset
- class mmdet.datasets.LVISV05Dataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
LVIS v0.5 dataset for detection.
- class mmdet.datasets.LVISV1Dataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
LVIS v1 dataset for detection.
- class mmdet.datasets.MDETRStyleRefCocoDataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
RefCOCO dataset.
Only support evaluation now.
- load_data_list() List[dict] [source]¶
Load annotations from an annotation file named as
self.ann_file
If the annotation file does not follow OpenMMLab 2.0 format dataset . The subclass must override this method for load annotations. The meta information of annotation file will be overwritten
METAINFO
andmetainfo
argument of constructor.- Returns
A list of annotation.
- Return type
list[dict]
- class mmdet.datasets.MOTChallengeDataset(visibility_thr: float = -1, *args, **kwargs)[source]¶
Dataset for MOTChallenge.
- Parameters
visibility_thr (float, optional) – The minimum visibility for the objects during training. Default to -1.
- parse_data_info(raw_data_info: dict) Union[dict, List[dict]] [source]¶
Parse raw annotation to target format. The difference between this function and the one in
BaseVideoDataset
is that the parsing here addsvisibility
andmot_conf
.- Parameters
raw_data_info (dict) – Raw data information load from
ann_file
- Returns
Parsed annotation.
- Return type
Union[dict, List[dict]]
- class mmdet.datasets.MultiImageMixDataset(dataset: Union[BaseDataset, dict], pipeline: Sequence[str], skip_type_keys: Optional[Sequence[str]] = None, max_refetch: int = 15, lazy_init: bool = False)[source]¶
A wrapper of multiple images mixed dataset.
Suitable for training on multiple images mixed data augmentation like mosaic and mixup. For the augmentation pipeline of mixed image data, the get_indexes method needs to be provided to obtain the image indexes, and you can set skip_flags to change the pipeline running process. At the same time, we provide the dynamic_scale parameter to dynamically change the output image size.
- Parameters
dataset (
CustomDataset
) – The dataset to be mixed.pipeline (Sequence[dict]) – Sequence of transform object or config dict to be composed.
dynamic_scale (tuple[int], optional) – The image scale can be changed dynamically. Default to None. It is deprecated.
skip_type_keys (list[str], optional) – Sequence of type string to be skip pipeline. Default to None.
max_refetch (int) – The maximum number of retry iterations for getting valid results from the pipeline. If the number of iterations is greater than max_refetch, but results is still None, then the iteration is terminated and raise the error. Default: 15.
- get_data_info(idx: int) dict [source]¶
Get annotation by index.
- Parameters
idx (int) – Global index of
ConcatDataset
.- Returns
The idx-th annotation of the datasets.
- Return type
dict
- property metainfo: dict¶
Get the meta information of the multi-image-mixed dataset.
- Returns
The meta information of multi-image-mixed dataset.
- Return type
dict
- class mmdet.datasets.MultiSourceSampler(dataset: Sized, batch_size: int, source_ratio: List[Union[int, float]], shuffle: bool = True, seed: Optional[int] = None)[source]¶
Multi-Source Infinite Sampler.
According to the sampling ratio, sample data from different datasets to form batches.
- Parameters
dataset (Sized) – The dataset.
batch_size (int) – Size of mini-batch.
source_ratio (list[int | float]) – The sampling ratio of different source datasets in a mini-batch.
shuffle (bool) – Whether shuffle the dataset or not. Defaults to True.
seed (int, optional) – Random seed. If None, set a random seed. Defaults to None.
Examples
>>> dataset_type = 'ConcatDataset' >>> sub_dataset_type = 'CocoDataset' >>> data_root = 'data/coco/' >>> sup_ann = '../coco_semi_annos/instances_train2017.1@10.json' >>> unsup_ann = '../coco_semi_annos/' \ >>> 'instances_train2017.1@10-unlabeled.json' >>> dataset = dict(type=dataset_type, >>> datasets=[ >>> dict( >>> type=sub_dataset_type, >>> data_root=data_root, >>> ann_file=sup_ann, >>> data_prefix=dict(img='train2017/'), >>> filter_cfg=dict(filter_empty_gt=True, min_size=32), >>> pipeline=sup_pipeline), >>> dict( >>> type=sub_dataset_type, >>> data_root=data_root, >>> ann_file=unsup_ann, >>> data_prefix=dict(img='train2017/'), >>> filter_cfg=dict(filter_empty_gt=True, min_size=32), >>> pipeline=unsup_pipeline), >>> ]) >>> train_dataloader = dict( >>> batch_size=5, >>> num_workers=5, >>> persistent_workers=True, >>> sampler=dict(type='MultiSourceSampler', >>> batch_size=5, source_ratio=[1, 4]), >>> batch_sampler=None, >>> dataset=dataset)
- class mmdet.datasets.ODVGDataset(*args, data_root: str = '', label_map_file: Optional[str] = None, need_text: bool = True, **kwargs)[source]¶
Object detection and visual grounding dataset.
- load_data_list() List[dict] [source]¶
Load annotations from an annotation file named as
self.ann_file
If the annotation file does not follow OpenMMLab 2.0 format dataset . The subclass must override this method for load annotations. The meta information of annotation file will be overwritten
METAINFO
andmetainfo
argument of constructor.- Returns
A list of annotation.
- Return type
list[dict]
- class mmdet.datasets.Objects365V1Dataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
Objects365 v1 dataset for detection.
- class mmdet.datasets.Objects365V2Dataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
Objects365 v2 dataset for detection.
- class mmdet.datasets.OpenImagesChallengeDataset(ann_file: str, **kwargs)[source]¶
Open Images Challenge dataset for detection.
- Parameters
ann_file (str) – Open Images Challenge box annotation in txt format.
- class mmdet.datasets.OpenImagesDataset(label_file: str, meta_file: str, hierarchy_file: str, image_level_ann_file: Optional[str] = None, **kwargs)[source]¶
Open Images dataset for detection.
- Parameters
ann_file (str) – Annotation file path.
label_file (str) – File path of the label description file that maps the classes names in MID format to their short descriptions.
meta_file (str) – File path to get image metas.
hierarchy_file (str) – The file path of the class hierarchy.
image_level_ann_file (str) – Human-verified image level annotation, which is used in evaluation.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
- class mmdet.datasets.ReIDDataset(triplet_sampler: Optional[dict] = None, *args, **kwargs)[source]¶
Dataset for ReID.
- Parameters
triplet_sampler (dict, optional) – The sampler for hard mining triplet loss. Defaults to None.
keys – num_ids (int): The number of person ids. ins_per_id (int): The number of image for each person.
- load_data_list() List[dict] [source]¶
Load annotations from an annotation file named as ‘’self.ann_file’’.
- Returns
A list of annotation.
- Return type
list[dict]
- prepare_data(idx: int) Any [source]¶
Get data processed by ‘’self.pipeline’’.
- Parameters
idx (int) – The index of ‘’data_info’’
- Returns
Depends on ‘’self.pipeline’’
- Return type
Any
- triplet_sampling(pos_pid, num_ids: int = 8, ins_per_id: int = 4) Dict [source]¶
Triplet sampler for hard mining triplet loss. First, for one pos_pid, random sample ins_per_id images with same person id.
Then, random sample num_ids - 1 images for each negative id. Finally, random sample ins_per_id images for each negative id.
- Parameters
pos_pid (ndarray) – The person id of the anchor.
num_ids (int) – The number of person ids.
ins_per_id (int) – The number of images for each person.
- Returns
Annotation information of num_ids X ins_per_id images.
- Return type
Dict
- class mmdet.datasets.RefCocoDataset(data_root: str, ann_file: str, split_file: str, data_prefix: Dict, split: str = 'train', text_mode: str = 'random', **kwargs)[source]¶
RefCOCO dataset.
The Refcoco and Refcoco+ dataset is based on ReferItGame: Referring to Objects in Photographs of Natural Scenes.
The Refcocog dataset is based on Generation and Comprehension of Unambiguous Object Descriptions.
- Parameters
ann_file (str) – Annotation file path.
data_root (str) – The root directory for
data_prefix
andann_file
. Defaults to ‘’.data_prefix (str) – Prefix for training data.
split_file (str) – Split file path.
split (str) – Split name. Defaults to ‘train’.
text_mode (str) – Text mode. Defaults to ‘random’.
**kwargs – Other keyword arguments in
BaseDataset
.
- class mmdet.datasets.TrackAspectRatioBatchSampler(sampler: Sampler, batch_size: int, drop_last: bool = False)[source]¶
A sampler wrapper for grouping images with similar aspect ratio (< 1 or.
>= 1) into a same batch.
- Parameters
sampler (Sampler) – Base sampler.
batch_size (int) – Size of mini-batch.
drop_last (bool) – If
True
, the sampler will drop the last batch if its size would be less thanbatch_size
.
- class mmdet.datasets.TrackImgSampler(dataset: Sized, seed: Optional[int] = None)[source]¶
Sampler that providing image-level sampling outputs for video datasets in tracking tasks. It could be both used in both distributed and non-distributed environment. If using the default sampler in pytorch, the subsequent data receiver will get one video, which is not desired in some cases: (Take a non-distributed environment as an example) 1. In test mode, we want only one image is fed into the data pipeline. This is in consideration of memory usage since feeding the whole video commonly requires a large amount of memory (>=20G on MOTChallenge17 dataset), which is not available in some machines. 2. In training mode, we may want to make sure all the images in one video are randomly sampled once in one epoch and this can not be guaranteed in the default sampler in pytorch.
- Parameters
dataset (Sized) – Dataset used for sampling.
seed (int, optional) – random seed used to shuffle the sampler. This number should be identical across all processes in the distributed group. Defaults to None.
- class mmdet.datasets.V3DetDataset(*args, metainfo: Optional[dict] = None, data_root: str = '', label_file='annotations/category_name_13204_v3det_2023_v1.txt', **kwargs)[source]¶
Dataset for V3Det.
- class mmdet.datasets.WIDERFaceDataset(img_subdir: str = 'JPEGImages', ann_subdir: str = 'Annotations', **kwargs)[source]¶
Reader for the WIDER Face dataset in PASCAL VOC format.
Conversion scripts can be found in https://github.com/sovrasov/wider-face-pascal-voc-annotations
- class mmdet.datasets.XMLDataset(img_subdir: str = 'JPEGImages', ann_subdir: str = 'Annotations', **kwargs)[source]¶
XML dataset for detection.
- Parameters
img_subdir (str) – Subdir where images are stored. Default: JPEGImages.
ann_subdir (str) – Subdir where annotations are. Default: Annotations.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
- property bbox_min_size: Optional[int]¶
Return the minimum size of bounding boxes in the images.
- filter_data() List[dict] [source]¶
Filter annotations according to filter_cfg.
- Returns
Filtered results.
- Return type
List[dict]
- load_data_list() List[dict] [source]¶
Load annotation from XML style ann_file.
- Returns
Annotation info from XML file.
- Return type
list[dict]
- parse_data_info(img_info: dict) Union[dict, List[dict]] [source]¶
Parse raw annotation to target format.
- Parameters
img_info (dict) – Raw image information, usually it includes img_id, file_name, and xml_path.
- Returns
Parsed annotation.
- Return type
Union[dict, List[dict]]
- property sub_data_root: str¶
Return the sub data root.
- class mmdet.datasets.YouTubeVISDataset(dataset_version: str, *args, **kwargs)[source]¶
YouTube VIS dataset for video instance segmentation.
- Parameters
dataset_version (str) – Select dataset year version.
- mmdet.datasets.get_loading_pipeline(pipeline)[source]¶
Only keep loading image and annotations related configuration.
- Parameters
pipeline (list[dict]) – Data pipeline configs.
- Returns
- The new pipeline list with only keep
loading image and annotations related configuration.
- Return type
list[dict]
Examples
>>> pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True), ... dict(type='Resize', img_scale=(1333, 800), keep_ratio=True), ... dict(type='RandomFlip', flip_ratio=0.5), ... dict(type='Normalize', **img_norm_cfg), ... dict(type='Pad', size_divisor=32), ... dict(type='DefaultFormatBundle'), ... dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']) ... ] >>> expected_pipelines = [ ... dict(type='LoadImageFromFile'), ... dict(type='LoadAnnotations', with_bbox=True) ... ] >>> assert expected_pipelines == get_loading_pipeline(pipelines)
- class mmdet.datasets.iSAIDDataset(*args, seg_map_suffix: str = '.png', proposal_file: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, return_classes: bool = False, caption_prompt: Optional[dict] = None, **kwargs)[source]¶
Dataset for iSAID instance segmentation.
iSAID: A Large-scale Dataset for Instance Segmentation in Aerial Images.
For more detail, please refer to “projects/iSAID/README.md”
api_wrappers¶
- class mmdet.datasets.api_wrappers.COCO(*args: Any, **kwargs: Any)[source]¶
This class is almost the same as official pycocotools package.
It implements some snake case function aliases. So that the COCO class has the same interface as LVIS class.
- class mmdet.datasets.api_wrappers.COCOPanoptic(*args: Any, **kwargs: Any)[source]¶
This wrapper is for loading the panoptic style annotation file.
The format is shown in the CocoPanopticDataset class.
- Parameters
annotation_file (str, optional) – Path of annotation file. Defaults to None.
- load_anns(ids: Union[List[int], int] = []) Optional[List[dict]] [source]¶
Load anns with the specified ids.
self.anns
is a list of annotation lists instead of a list of annotations.- Parameters
ids (Union[List[int], int]) – Integer ids specifying anns.
- Returns
Loaded ann objects.
- Return type
anns (List[dict], optional)
samplers¶
- class mmdet.datasets.samplers.AspectRatioBatchSampler(sampler: Sampler, batch_size: int, drop_last: bool = False)[source]¶
A sampler wrapper for grouping images with similar aspect ratio (< 1 or.
>= 1) into a same batch.
- Parameters
sampler (Sampler) – Base sampler.
batch_size (int) – Size of mini-batch.
drop_last (bool) – If
True
, the sampler will drop the last batch if its size would be less thanbatch_size
.
- class mmdet.datasets.samplers.ClassAwareSampler(dataset: BaseDataset, seed: Optional[int] = None, num_sample_class: int = 1)[source]¶
Sampler that restricts data loading to the label of the dataset.
A class-aware sampling strategy to effectively tackle the non-uniform class distribution. The length of the training data is consistent with source data. Simple improvements based on Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks
The implementation logic is referred to https://github.com/Sense-X/TSD/blob/master/mmdet/datasets/samplers/distributed_classaware_sampler.py
- Parameters
dataset – Dataset used for sampling.
seed (int, optional) – random seed used to shuffle the sampler. This number should be identical across all processes in the distributed group. Defaults to None.
num_sample_class (int) – The number of samples taken from each per-label list. Defaults to 1.
- class mmdet.datasets.samplers.CustomSampleSizeSampler(dataset: Sized, dataset_size: Sequence[int], ratio_mode: bool = False, seed: Optional[int] = None, round_up: bool = True)[source]¶
- class mmdet.datasets.samplers.GroupMultiSourceSampler(dataset: BaseDataset, batch_size: int, source_ratio: List[Union[int, float]], shuffle: bool = True, seed: Optional[int] = None)[source]¶
Group Multi-Source Infinite Sampler.
According to the sampling ratio, sample data from different datasets but the same group to form batches.
- Parameters
dataset (Sized) – The dataset.
batch_size (int) – Size of mini-batch.
source_ratio (list[int | float]) – The sampling ratio of different source datasets in a mini-batch.
shuffle (bool) – Whether shuffle the dataset or not. Defaults to True.
seed (int, optional) – Random seed. If None, set a random seed. Defaults to None.
- class mmdet.datasets.samplers.MultiDataAspectRatioBatchSampler(sampler: Sampler, batch_size: Sequence[int], num_datasets: int, drop_last: bool = True)[source]¶
A sampler wrapper for grouping images with similar aspect ratio (< 1 or.
>= 1) into a same batch for multi-source datasets.
- Parameters
sampler (Sampler) – Base sampler.
batch_size (Sequence(int)) – Size of mini-batch for multi-source
datasets. –
num_datasets (int) – Number of multi-source datasets.
drop_last (bool) – If
True
, the sampler will drop the last batch ifbatch_size. (its size would be less than) –
- class mmdet.datasets.samplers.MultiDataSampler(dataset: Sized, dataset_ratio: Sequence[int], seed: Optional[int] = None, round_up: bool = True)[source]¶
The default data sampler for both distributed and non-distributed environment.
It has several differences from the PyTorch
DistributedSampler
as below:This sampler supports non-distributed environment.
The round up behaviors are a little different.
If
round_up=True
, this sampler will add extra samples to make the number of samples is evenly divisible by the world size. And this behavior is the same as theDistributedSampler
withdrop_last=False
.If
round_up=False
, this sampler won’t remove or add any samples while theDistributedSampler
withdrop_last=True
will remove tail samples.
- Parameters
dataset (Sized) – The dataset.
dataset_ratio (Sequence(int)) –
seed (int, optional) – Random seed used to shuffle the sampler if
shuffle=True
. This number should be identical across all processes in the distributed group. Defaults to None.round_up (bool) – Whether to add extra samples to make the number of samples evenly divisible by the world size. Defaults to True.
- class mmdet.datasets.samplers.MultiSourceSampler(dataset: Sized, batch_size: int, source_ratio: List[Union[int, float]], shuffle: bool = True, seed: Optional[int] = None)[source]¶
Multi-Source Infinite Sampler.
According to the sampling ratio, sample data from different datasets to form batches.
- Parameters
dataset (Sized) – The dataset.
batch_size (int) – Size of mini-batch.
source_ratio (list[int | float]) – The sampling ratio of different source datasets in a mini-batch.
shuffle (bool) – Whether shuffle the dataset or not. Defaults to True.
seed (int, optional) – Random seed. If None, set a random seed. Defaults to None.
Examples
>>> dataset_type = 'ConcatDataset' >>> sub_dataset_type = 'CocoDataset' >>> data_root = 'data/coco/' >>> sup_ann = '../coco_semi_annos/instances_train2017.1@10.json' >>> unsup_ann = '../coco_semi_annos/' \ >>> 'instances_train2017.1@10-unlabeled.json' >>> dataset = dict(type=dataset_type, >>> datasets=[ >>> dict( >>> type=sub_dataset_type, >>> data_root=data_root, >>> ann_file=sup_ann, >>> data_prefix=dict(img='train2017/'), >>> filter_cfg=dict(filter_empty_gt=True, min_size=32), >>> pipeline=sup_pipeline), >>> dict( >>> type=sub_dataset_type, >>> data_root=data_root, >>> ann_file=unsup_ann, >>> data_prefix=dict(img='train2017/'), >>> filter_cfg=dict(filter_empty_gt=True, min_size=32), >>> pipeline=unsup_pipeline), >>> ]) >>> train_dataloader = dict( >>> batch_size=5, >>> num_workers=5, >>> persistent_workers=True, >>> sampler=dict(type='MultiSourceSampler', >>> batch_size=5, source_ratio=[1, 4]), >>> batch_sampler=None, >>> dataset=dataset)
- class mmdet.datasets.samplers.TrackAspectRatioBatchSampler(sampler: Sampler, batch_size: int, drop_last: bool = False)[source]¶
A sampler wrapper for grouping images with similar aspect ratio (< 1 or.
>= 1) into a same batch.
- Parameters
sampler (Sampler) – Base sampler.
batch_size (int) – Size of mini-batch.
drop_last (bool) – If
True
, the sampler will drop the last batch if its size would be less thanbatch_size
.
- class mmdet.datasets.samplers.TrackImgSampler(dataset: Sized, seed: Optional[int] = None)[source]¶
Sampler that providing image-level sampling outputs for video datasets in tracking tasks. It could be both used in both distributed and non-distributed environment. If using the default sampler in pytorch, the subsequent data receiver will get one video, which is not desired in some cases: (Take a non-distributed environment as an example) 1. In test mode, we want only one image is fed into the data pipeline. This is in consideration of memory usage since feeding the whole video commonly requires a large amount of memory (>=20G on MOTChallenge17 dataset), which is not available in some machines. 2. In training mode, we may want to make sure all the images in one video are randomly sampled once in one epoch and this can not be guaranteed in the default sampler in pytorch.
- Parameters
dataset (Sized) – Dataset used for sampling.
seed (int, optional) – random seed used to shuffle the sampler. This number should be identical across all processes in the distributed group. Defaults to None.
transforms¶
- class mmdet.datasets.transforms.Albu(transforms: List[dict], bbox_params: Optional[dict] = None, keymap: Optional[dict] = None, skip_img_without_anno: bool = False)[source]¶
Albumentation augmentation.
Adds custom transformations from Albumentations library. Please, visit https://albumentations.readthedocs.io to get more information.
Required Keys:
img (np.uint8)
gt_bboxes (HorizontalBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
Modified Keys:
img (np.uint8)
gt_bboxes (HorizontalBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
img_shape (tuple)
An example of
transforms
is as followed:[ dict( type='ShiftScaleRotate', shift_limit=0.0625, scale_limit=0.0, rotate_limit=0, interpolation=1, p=0.5), dict( type='RandomBrightnessContrast', brightness_limit=[0.1, 0.3], contrast_limit=[0.1, 0.3], p=0.2), dict(type='ChannelShuffle', p=0.1), dict( type='OneOf', transforms=[ dict(type='Blur', blur_limit=3, p=1.0), dict(type='MedianBlur', blur_limit=3, p=1.0) ], p=0.1), ]
- Parameters
transforms (list[dict]) – A list of albu transformations
bbox_params (dict, optional) – Bbox_params for albumentation Compose
keymap (dict, optional) – Contains {‘input key’:’albumentation-style key’}
skip_img_without_anno (bool) – Whether to skip the image if no ann left after aug. Defaults to False.
- albu_builder(cfg: dict) <module 'albumentations' from '/home/docs/checkouts/readthedocs.org/user_builds/onedl-mmdetection/envs/5/lib/python3.10/site-packages/albumentations/__init__.py'> [source]¶
Import a module from albumentations.
It inherits some of
build_from_cfg()
logic.- Parameters
cfg (dict) – Config dict. It should at least contain the key “type”.
- Returns
The constructed object.
- Return type
obj
- static mapper(d: dict, keymap: dict) dict [source]¶
Dictionary mapper. Renames keys according to keymap provided.
- Parameters
d (dict) – old dict
keymap (dict) – {‘old_key’:’new_key’}
- Returns
new dict.
- Return type
dict
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.AutoAugment(policies: List[List[Union[ConfigDict, dict]]] = [[{'type': 'Equalize', 'prob': 0.8, 'level': 1}, {'type': 'ShearY', 'prob': 0.8, 'level': 4}], [{'type': 'Color', 'prob': 0.4, 'level': 9}, {'type': 'Equalize', 'prob': 0.6, 'level': 3}], [{'type': 'Color', 'prob': 0.4, 'level': 1}, {'type': 'Rotate', 'prob': 0.6, 'level': 8}], [{'type': 'Solarize', 'prob': 0.8, 'level': 3}, {'type': 'Equalize', 'prob': 0.4, 'level': 7}], [{'type': 'Solarize', 'prob': 0.4, 'level': 2}, {'type': 'Solarize', 'prob': 0.6, 'level': 2}], [{'type': 'Color', 'prob': 0.2, 'level': 0}, {'type': 'Equalize', 'prob': 0.8, 'level': 8}], [{'type': 'Equalize', 'prob': 0.4, 'level': 8}, {'type': 'SolarizeAdd', 'prob': 0.8, 'level': 3}], [{'type': 'ShearX', 'prob': 0.2, 'level': 9}, {'type': 'Rotate', 'prob': 0.6, 'level': 8}], [{'type': 'Color', 'prob': 0.6, 'level': 1}, {'type': 'Equalize', 'prob': 1.0, 'level': 2}], [{'type': 'Invert', 'prob': 0.4, 'level': 9}, {'type': 'Rotate', 'prob': 0.6, 'level': 0}], [{'type': 'Equalize', 'prob': 1.0, 'level': 9}, {'type': 'ShearY', 'prob': 0.6, 'level': 3}], [{'type': 'Color', 'prob': 0.4, 'level': 7}, {'type': 'Equalize', 'prob': 0.6, 'level': 0}], [{'type': 'Posterize', 'prob': 0.4, 'level': 6}, {'type': 'AutoContrast', 'prob': 0.4, 'level': 7}], [{'type': 'Solarize', 'prob': 0.6, 'level': 8}, {'type': 'Color', 'prob': 0.6, 'level': 9}], [{'type': 'Solarize', 'prob': 0.2, 'level': 4}, {'type': 'Rotate', 'prob': 0.8, 'level': 9}], [{'type': 'Rotate', 'prob': 1.0, 'level': 7}, {'type': 'TranslateY', 'prob': 0.8, 'level': 9}], [{'type': 'ShearX', 'prob': 0.0, 'level': 0}, {'type': 'Solarize', 'prob': 0.8, 'level': 4}], [{'type': 'ShearY', 'prob': 0.8, 'level': 0}, {'type': 'Color', 'prob': 0.6, 'level': 4}], [{'type': 'Color', 'prob': 1.0, 'level': 0}, {'type': 'Rotate', 'prob': 0.6, 'level': 2}], [{'type': 'Equalize', 'prob': 0.8, 'level': 4}, {'type': 'Equalize', 'prob': 0.0, 'level': 8}], [{'type': 'Equalize', 'prob': 1.0, 'level': 4}, {'type': 'AutoContrast', 'prob': 0.6, 'level': 2}], [{'type': 'ShearY', 'prob': 0.4, 'level': 7}, {'type': 'SolarizeAdd', 'prob': 0.6, 'level': 7}], [{'type': 'Posterize', 'prob': 0.8, 'level': 2}, {'type': 'Solarize', 'prob': 0.6, 'level': 10}], [{'type': 'Solarize', 'prob': 0.6, 'level': 8}, {'type': 'Equalize', 'prob': 0.6, 'level': 1}], [{'type': 'Color', 'prob': 0.8, 'level': 6}, {'type': 'Rotate', 'prob': 0.4, 'level': 5}]], prob: Optional[List[float]] = None)[source]¶
Auto augmentation.
This data augmentation is proposed in AutoAugment: Learning Augmentation Policies from Data and in Learning Data Augmentation Strategies for Object Detection.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_ignore_flags (bool) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
img_shape
gt_bboxes
gt_bboxes_labels
gt_masks
gt_ignore_flags
gt_seg_map
Added Keys:
homography_matrix
- Parameters
policies (List[List[Union[dict, ConfigDict]]]) – The policies of auto augmentation.Each policy in
policies
is a specific augmentation policy, and is composed by several augmentations. When AutoAugment is called, a random policy inpolicies
will be selected to augment images. Defaults to policy_v0().prob (list[float], optional) – The probabilities associated with each policy. The length should be equal to the policy number and the sum should be 1. If not given, a uniform distribution will be assumed. Defaults to None.
Examples
>>> policies = [ >>> [ >>> dict(type='Sharpness', prob=0.0, level=8), >>> dict(type='ShearX', prob=0.4, level=0,) >>> ], >>> [ >>> dict(type='Rotate', prob=0.6, level=10), >>> dict(type='Color', prob=1.0, level=6) >>> ] >>> ] >>> augmentation = AutoAugment(policies) >>> img = np.ones(100, 100, 3) >>> gt_bboxes = np.ones(10, 4) >>> results = dict(img=img, gt_bboxes=gt_bboxes) >>> results = augmentation(results)
- class mmdet.datasets.transforms.AutoContrast(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.1, max_mag: float = 1.9)[source]¶
Auto adjust image contrast.
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing AutoContrast should be in range [0, 1]. Defaults to 1.0.
level (int, optional) – No use for AutoContrast transformation. Defaults to None.
min_mag (float) – No use for AutoContrast transformation. Defaults to 0.1.
max_mag (float) – No use for AutoContrast transformation. Defaults to 1.9.
- class mmdet.datasets.transforms.BaseFrameSample(collect_video_keys: List[str] = ['video_id', 'video_length'])[source]¶
Directly get the key frame, no reference frames.
- Parameters
collect_video_keys (list[str]) – The keys of video info to be collected.
- class mmdet.datasets.transforms.Brightness(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.1, max_mag: float = 1.9)[source]¶
Adjust the brightness of the image. A magnitude=0 gives a black image, whereas magnitude=1 gives the original image. The bboxes, masks and segmentations are not modified.
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing Brightness transformation. Defaults to 1.0.
level (int, optional) – Should be in range [0,_MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum magnitude for Brightness transformation. Defaults to 0.1.
max_mag (float) – The maximum magnitude for Brightness transformation. Defaults to 1.9.
- class mmdet.datasets.transforms.CachedMixUp(img_scale: Tuple[int, int] = (640, 640), ratio_range: Tuple[float, float] = (0.5, 1.5), flip_ratio: float = 0.5, pad_val: float = 114.0, max_iters: int = 15, bbox_clip_border: bool = True, max_cached_images: int = 20, random_pop: bool = True, prob: float = 1.0)[source]¶
Cached mixup data augmentation.
mixup transform +------------------------------+ | mixup image | | | +--------|--------+ | | | | | | |---------------+ | | | | | | | | image | | | | | | | | | | | |-----------------+ | | pad | +------------------------------+ The cached mixup transform steps are as follows: 1. Append the results from the last transform into the cache. 2. Another random image is picked from the cache and embedded in the top left patch(after padding and resizing) 3. The target of mixup transform is the weighted average of mixup image and origin image.
Required Keys:
img
gt_bboxes (np.float32) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_ignore_flags (bool) (optional)
mix_results (List[dict])
Modified Keys:
img
img_shape
gt_bboxes (optional)
gt_bboxes_labels (optional)
gt_ignore_flags (optional)
- Parameters
img_scale (Sequence[int]) – Image output size after mixup pipeline. The shape order should be (width, height). Defaults to (640, 640).
ratio_range (Sequence[float]) – Scale ratio of mixup image. Defaults to (0.5, 1.5).
flip_ratio (float) – Horizontal flip ratio of mixup image. Defaults to 0.5.
pad_val (int) – Pad value. Defaults to 114.
max_iters (int) – The maximum number of iterations. If the number of iterations is greater than max_iters, but gt_bbox is still empty, then the iteration is terminated. Defaults to 15.
bbox_clip_border (bool, optional) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
max_cached_images (int) – The maximum length of the cache. The larger the cache, the stronger the randomness of this transform. As a rule of thumb, providing 10 caches for each image suffices for randomness. Defaults to 20.
random_pop (bool) – Whether to randomly pop a result from the cache when the cache is full. If set to False, use FIFO popping method. Defaults to True.
prob (float) – Probability of applying this transformation. Defaults to 1.0.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.CachedMosaic(*args, max_cached_images: int = 40, random_pop: bool = True, **kwargs)[source]¶
Cached mosaic augmentation.
Cached mosaic transform will random select images from the cache and combine them into one output image.
mosaic transform center_x +------------------------------+ | pad | pad | | +-----------+ | | | | | | | image1 |--------+ | | | | | | | | | image2 | | center_y |----+-------------+-----------| | | cropped | | |pad | image3 | image4 | | | | | +----|-------------+-----------+ | | +-------------+ The cached mosaic transform steps are as follows: 1. Append the results from the last transform into the cache. 2. Choose the mosaic center as the intersections of 4 images 3. Get the left top image according to the index, and randomly sample another 3 images from the result cache. 4. Sub image will be cropped if image is larger than mosaic patch
Required Keys:
img
gt_bboxes (np.float32) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_ignore_flags (bool) (optional)
Modified Keys:
img
img_shape
gt_bboxes (optional)
gt_bboxes_labels (optional)
gt_ignore_flags (optional)
- Parameters
img_scale (Sequence[int]) – Image size before mosaic pipeline of single image. The shape order should be (width, height). Defaults to (640, 640).
center_ratio_range (Sequence[float]) – Center ratio range of mosaic output. Defaults to (0.5, 1.5).
bbox_clip_border (bool, optional) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
pad_val (int) – Pad value. Defaults to 114.
prob (float) – Probability of applying this transformation. Defaults to 1.0.
max_cached_images (int) – The maximum length of the cache. The larger the cache, the stronger the randomness of this transform. As a rule of thumb, providing 10 caches for each image suffices for randomness. Defaults to 40.
random_pop (bool) – Whether to randomly pop a result from the cache when the cache is full. If set to False, use FIFO popping method. Defaults to True.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.Color(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.1, max_mag: float = 1.9)[source]¶
Adjust the color balance of the image, in a manner similar to the controls on a colour TV set. A magnitude=0 gives a black & white image, whereas magnitude=1 gives the original image. The bboxes, masks and segmentations are not modified.
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing Color transformation. Defaults to 1.0.
level (int, optional) – Should be in range [0,_MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum magnitude for Color transformation. Defaults to 0.1.
max_mag (float) – The maximum magnitude for Color transformation. Defaults to 1.9.
- class mmdet.datasets.transforms.ColorTransform(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.1, max_mag: float = 1.9)[source]¶
Base class for color transformations. All color transformations need to inherit from this base class.
ColorTransform
unifies the class attributes and class functions of color transformations (Color, Brightness, Contrast, Sharpness, Solarize, SolarizeAdd, Equalize, AutoContrast, Invert, and Posterize), and only distort color channels, without impacting the locations of the instances.Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing the geometric transformation and should be in range [0, 1]. Defaults to 1.0.
level (int, optional) – The level should be in range [0, _MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum magnitude for color transformation. Defaults to 0.1.
max_mag (float) – The maximum magnitude for color transformation. Defaults to 1.9.
- class mmdet.datasets.transforms.Contrast(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.1, max_mag: float = 1.9)[source]¶
Control the contrast of the image. A magnitude=0 gives a gray image, whereas magnitude=1 gives the original imageThe bboxes, masks and segmentations are not modified.
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing Contrast transformation. Defaults to 1.0.
level (int, optional) – Should be in range [0,_MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum magnitude for Contrast transformation. Defaults to 0.1.
max_mag (float) – The maximum magnitude for Contrast transformation. Defaults to 1.9.
- class mmdet.datasets.transforms.CopyPaste(max_num_pasted: int = 100, bbox_occluded_thr: int = 10, mask_occluded_thr: int = 300, selected: bool = True, paste_by_box: bool = False)[source]¶
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation The simple copy-paste transform steps are as follows:
The destination image is already resized with aspect ratio kept, cropped and padded.
Randomly select a source image, which is also already resized with aspect ratio kept, cropped and padded in a similar way as the destination image.
Randomly select some objects from the source image.
Paste these source objects to the destination image directly, due to the source and destination image have the same size.
Update object masks of the destination image, for some origin objects may be occluded.
Generate bboxes from the updated destination masks and filter some objects which are totally occluded, and adjust bboxes which are partly occluded.
Append selected source bboxes, masks, and labels.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_ignore_flags (bool) (optional)
gt_masks (BitmapMasks) (optional)
Modified Keys:
img
gt_bboxes (optional)
gt_bboxes_labels (optional)
gt_ignore_flags (optional)
gt_masks (optional)
- Parameters
max_num_pasted (int) – The maximum number of pasted objects. Defaults to 100.
bbox_occluded_thr (int) – The threshold of occluded bbox. Defaults to 10.
mask_occluded_thr (int) – The threshold of occluded mask. Defaults to 300.
selected (bool) – Whether select objects or not. If select is False, all objects of the source image will be pasted to the destination image. Defaults to True.
paste_by_box (bool) – Whether use boxes as masks when masks are not available. Defaults to False.
- get_gt_masks(results: dict) BitmapMasks [source]¶
Get gt_masks originally or generated based on bboxes.
If gt_masks is not contained in results, it will be generated based on gt_bboxes. :param results: Result dict. :type results: dict
- Returns
gt_masks, originally or generated based on bboxes.
- Return type
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.CutOut(n_holes: Union[int, Tuple[int, int]], cutout_shape: Optional[Union[Tuple[int, int], List[Tuple[int, int]]]] = None, cutout_ratio: Optional[Union[Tuple[float, float], List[Tuple[float, float]]]] = None, fill_in: Union[Tuple[float, float, float], Tuple[int, int, int]] = (0, 0, 0))[source]¶
CutOut operation.
Randomly drop some regions of image used in Cutout.
Required Keys:
img
Modified Keys:
img
- Parameters
n_holes (int or tuple[int, int]) – Number of regions to be dropped. If it is given as a list, number of holes will be randomly selected from the closed interval [
n_holes[0]
,n_holes[1]
].cutout_shape (tuple[int, int] or list[tuple[int, int]], optional) – The candidate shape of dropped regions. It can be
tuple[int, int]
to use a fixed cutout shape, orlist[tuple[int, int]]
to randomly choose shape from the list. Defaults to None.(tuple[float (cutout_ratio) – optional): The candidate ratio of dropped regions. It can be
tuple[float, float]
to use a fixed ratio orlist[tuple[float, float]]
to randomly choose ratio from the list. Please note thatcutout_shape
andcutout_ratio
cannot be both given at the same time. Defaults to None.list[tuple[float (float] or) – optional): The candidate ratio of dropped regions. It can be
tuple[float, float]
to use a fixed ratio orlist[tuple[float, float]]
to randomly choose ratio from the list. Please note thatcutout_shape
andcutout_ratio
cannot be both given at the same time. Defaults to None.float]] – optional): The candidate ratio of dropped regions. It can be
tuple[float, float]
to use a fixed ratio orlist[tuple[float, float]]
to randomly choose ratio from the list. Please note thatcutout_shape
andcutout_ratio
cannot be both given at the same time. Defaults to None.
- :paramoptional): The candidate ratio of dropped regions. It can be
tuple[float, float]
to use a fixed ratio orlist[tuple[float, float]]
to randomly choose ratio from the list. Please note thatcutout_shape
andcutout_ratio
cannot be both given at the same time. Defaults to None.
- Parameters
fill_in (tuple[float, float, float] or tuple[int, int, int]) – The value of pixel to fill in the dropped regions. Defaults to (0, 0, 0).
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.Equalize(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.1, max_mag: float = 1.9)[source]¶
Equalize the image histogram. The bboxes, masks and segmentations are not modified.
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing Equalize transformation. Defaults to 1.0.
level (int, optional) – No use for Equalize transformation. Defaults to None.
min_mag (float) – No use for Equalize transformation. Defaults to 0.1.
max_mag (float) – No use for Equalize transformation. Defaults to 1.9.
- class mmdet.datasets.transforms.Expand(mean: Sequence[Union[float, int]] = (0, 0, 0), to_rgb: bool = True, ratio_range: Sequence[Union[float, int]] = (1, 4), seg_ignore_label: Optional[int] = None, prob: float = 0.5)[source]¶
Random expand the image & bboxes & masks & segmentation map.
Randomly place the original image on a canvas of
ratio
x original image size filled with mean values. The ratio is in the range of ratio_range.Required Keys:
img
img_shape
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
img_shape
gt_bboxes
gt_masks
gt_seg_map
- Parameters
mean (sequence) – mean value of dataset.
to_rgb (bool) – if need to convert the order of mean to align with RGB.
ratio_range (sequence)) – range of expand ratio.
seg_ignore_label (int) – label of ignore segmentation map.
prob (float) – probability of applying this transformation
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.FilterAnnotations(min_gt_bbox_wh: Tuple[int, int] = (1, 1), min_gt_mask_area: int = 1, by_box: bool = True, by_mask: bool = False, keep_empty: bool = True)[source]¶
Filter invalid annotations.
Required Keys:
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_ignore_flags (bool) (optional)
Modified Keys:
gt_bboxes (optional)
gt_bboxes_labels (optional)
gt_masks (optional)
gt_ignore_flags (optional)
- Parameters
min_gt_bbox_wh (tuple[float]) – Minimum width and height of ground truth boxes. Default: (1., 1.)
min_gt_mask_area (int) – Minimum foreground area of ground truth masks. Default: 1
by_box (bool) – Filter instances with bounding boxes not meeting the min_gt_bbox_wh threshold. Default: True
by_mask (bool) – Filter instances with masks not meeting min_gt_mask_area threshold. Default: False
keep_empty (bool) – Whether to return None when it becomes an empty bbox after filtering. Defaults to True.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.FixScaleResize(scale: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, keep_ratio: bool = False, clip_object_border: bool = True, backend: str = 'cv2', interpolation='bilinear')[source]¶
Compared to Resize, FixScaleResize fixes the scaling issue when keep_ratio=true.
- class mmdet.datasets.transforms.FixShapeResize(width: int, height: int, pad_val: Union[int, float, dict] = {'img': 0, 'seg': 255}, keep_ratio: bool = False, clip_object_border: bool = True, backend: str = 'cv2', interpolation: str = 'bilinear')[source]¶
Resize images & bbox & seg to the specified size.
This transform resizes the input image according to
width
andheight
. Bboxes, masks, and seg map are then resized with the same parameters.Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
img_shape
gt_bboxes
gt_masks
gt_seg_map
Added Keys:
scale
scale_factor
keep_ratio
homography_matrix
- Parameters
width (int) – width for resizing.
height (int) – height for resizing. Defaults to None.
pad_val (Number | dict[str, Number], optional) –
Padding value for if the pad_mode is “constant”. If it is a single number, the value to pad the image is the number and to pad the semantic segmentation map is 255. If it is a dict, it should have the following keys:
img: The value to pad the image.
seg: The value to pad the semantic segmentation map.
Defaults to dict(img=0, seg=255).
keep_ratio (bool) – Whether to keep the aspect ratio when resizing the image. Defaults to False.
clip_object_border (bool) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
backend (str) – Image resize backend, choices are ‘cv2’ and ‘pillow’. These two backends generates slightly different results. Defaults to ‘cv2’.
interpolation (str) – Interpolation method, accepted values are “nearest”, “bilinear”, “bicubic”, “area”, “lanczos” for ‘cv2’ backend, “nearest”, “bilinear” for ‘pillow’ backend. Defaults to ‘bilinear’.
- transform(results: dict, *args, **kwargs) dict ¶
Transform function to resize images, bounding boxes, semantic segmentation map and keypoints.
- Parameters
results (dict) – Result dict from loading pipeline.
- Returns
Resized results, ‘img’, ‘gt_bboxes’, ‘gt_seg_map’, ‘gt_keypoints’, ‘scale’, ‘scale_factor’, ‘img_shape’, and ‘keep_ratio’ keys are updated in result dict.
- Return type
dict
- class mmdet.datasets.transforms.GTBoxSubOne_GLIP[source]¶
Subtract 1 from the x2 and y2 coordinates of the gt_bboxes.
- transform(results: dict) dict [source]¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.GeomTransform(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.0, max_mag: float = 1.0, reversal_prob: float = 0.5, img_border_value: Union[int, float, tuple] = 128, mask_border_value: int = 0, seg_ignore_label: int = 255, interpolation: str = 'bilinear')[source]¶
Base class for geometric transformations. All geometric transformations need to inherit from this base class.
GeomTransform
unifies the class attributes and class functions of geometric transformations (ShearX, ShearY, Rotate, TranslateX, and TranslateY), and records the homography matrix.Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
gt_bboxes
gt_masks
gt_seg_map
Added Keys:
homography_matrix
- Parameters
prob (float) – The probability for performing the geometric transformation and should be in range [0, 1]. Defaults to 1.0.
level (int, optional) – The level should be in range [0, _MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum magnitude for geometric transformation. Defaults to 0.0.
max_mag (float) – The maximum magnitude for geometric transformation. Defaults to 1.0.
reversal_prob (float) – The probability that reverses the geometric transformation magnitude. Should be in range [0,1]. Defaults to 0.5.
img_border_value (int | float | tuple) – The filled values for image border. If float, the same fill value will be used for all the three channels of image. If tuple, it should be 3 elements. Defaults to 128.
mask_border_value (int) – The fill value used for masks. Defaults to 0.
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Defaults to 255.interpolation (str) – Interpolation method, accepted values are “nearest”, “bilinear”, “bicubic”, “area”, “lanczos” for ‘cv2’ backend, “nearest”, “bilinear” for ‘pillow’ backend. Defaults to ‘bilinear’.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.ImageToTensor(keys)[source]¶
Convert image to
torch.Tensor
by given keys.The dimension order of input image is (H, W, C). The pipeline will convert it to (C, H, W). If only 2 dimension (H, W) is given, the output would be (1, H, W).
- Parameters
keys (Sequence[str]) – Key of images to be converted to Tensor.
- class mmdet.datasets.transforms.InferencerLoader(**kwargs)[source]¶
Load an image from
results['img']
.Similar with
LoadImageFromFile
, but the image has been loaded asnp.ndarray
inresults['img']
. Can be used when loading image from webcam.Required Keys:
img
Modified Keys:
img
img_path
img_shape
ori_shape
- Parameters
to_float32 (bool) – Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False.
- class mmdet.datasets.transforms.InstaBoost(action_candidate: tuple = ('normal', 'horizontal', 'skip'), action_prob: tuple = (1, 0, 0), scale: tuple = (0.8, 1.2), dx: int = 15, dy: int = 15, theta: tuple = (-1, 1), color_prob: float = 0.5, hflag: bool = False, aug_ratio: float = 0.5)[source]¶
Data augmentation method in InstaBoost: Boosting Instance Segmentation Via Probability Map Guided Copy-Pasting.
Refer to https://github.com/GothicAi/Instaboost for implementation details.
Required Keys:
img (np.uint8)
instances
Modified Keys:
img (np.uint8)
instances
- Parameters
action_candidate (tuple) – Action candidates. “normal”, “horizontal”, “vertical”, “skip” are supported. Defaults to (‘normal’, ‘horizontal’, ‘skip’).
action_prob (tuple) – Corresponding action probabilities. Should be the same length as action_candidate. Defaults to (1, 0, 0).
scale (tuple) – (min scale, max scale). Defaults to (0.8, 1.2).
dx (int) – The maximum x-axis shift will be (instance width) / dx. Defaults to 15.
dy (int) – The maximum y-axis shift will be (instance height) / dy. Defaults to 15.
theta (tuple) – (min rotation degree, max rotation degree). Defaults to (-1, 1).
color_prob (float) – Probability of images for color augmentation. Defaults to 0.5.
hflag (bool) – Whether to use heatmap guided. Defaults to False.
aug_ratio (float) – Probability of applying this transformation. Defaults to 0.5.
- class mmdet.datasets.transforms.Invert(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.1, max_mag: float = 1.9)[source]¶
Invert images.
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing invert therefore should be in range [0, 1]. Defaults to 1.0.
level (int, optional) – No use for Invert transformation. Defaults to None.
min_mag (float) – No use for Invert transformation. Defaults to 0.1.
max_mag (float) – No use for Invert transformation. Defaults to 1.9.
- class mmdet.datasets.transforms.LineDetDataProcessor(mean: Optional[Sequence[Number]] = None, std: Optional[Sequence[Number]] = None, pad_size_divisor: int = 1, pad_value: Union[float, int] = 0, pad_mask: bool = False, mask_pad_value: int = 0, pad_seg: bool = True, seg_pad_value: int = 255, bgr_to_rgb: bool = False, rgb_to_bgr: bool = False, boxtype2tensor: bool = True, non_blocking: Optional[bool] = False, batch_augments: Optional[List[dict]] = None)[source]¶
Image pre-processor for detection tasks.
Comparing with the
mmengine.ImgDataPreprocessor
,It supports batch augmentations.
2. It will additionally append batch_input_shape and pad_shape to data_samples considering the object detection task.
It provides the data pre-processing as follows
Collate and move data to the target device.
Pad inputs to the maximum size of current batch with defined
pad_value
. The padding size can be divisible by a definedpad_size_divisor
Stack inputs to batch_inputs.
Convert inputs from bgr to rgb if the shape of input is (3, H, W).
Normalize image with defined std and mean.
Do batch augmentations during training.
- Parameters
mean (Sequence[Number], optional) – The pixel mean of R, G, B channels. Defaults to None.
std (Sequence[Number], optional) – The pixel standard deviation of R, G, B channels. Defaults to None.
pad_size_divisor (int) – The size of padded image should be divisible by
pad_size_divisor
. Defaults to 1.pad_value (Number) – The padded pixel value. Defaults to 0.
pad_mask (bool) – Whether to pad instance masks. Defaults to False.
mask_pad_value (int) – The padded pixel value for instance masks. Defaults to 0.
pad_seg (bool) – Whether to pad semantic segmentation maps. Defaults to False.
seg_pad_value (int) – The padded pixel value for semantic segmentation maps. Defaults to 255.
bgr_to_rgb (bool) – whether to convert image from BGR to RGB. Defaults to False.
rgb_to_bgr (bool) – whether to convert image from RGB to RGB. Defaults to False.
boxtype2tensor (bool) – Whether to convert the
BaseBoxes
type of bboxes data toTensor
type. Defaults to True.non_blocking (bool) – Whether block current process when transferring data to device. Defaults to False.
batch_augments (list[dict], optional) – Batch-level augmentations
- forward(data: dict, training: bool = False) dict [source]¶
Perform normalization,padding and bgr2rgb conversion based on
BaseDataPreprocessor
.- Parameters
data (dict) – Data sampled from dataloader.
training (bool) – Whether to enable training time augmentation.
- Returns
Data in the same format as the model input.
- Return type
dict
- pad_gt_masks(batch_data_samples: Sequence[DetDataSample]) None [source]¶
Pad gt_masks to shape of batch_input_shape.
- pad_gt_sem_seg(batch_data_samples: Sequence[DetDataSample]) None [source]¶
Pad gt_sem_seg to shape of batch_input_shape.
- class mmdet.datasets.transforms.LinesToArray(num_points: int = 72, max_lines: int = 4, img_height: int = 320, img_width: int = 800)[source]¶
- transform(result)[source]¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.LoadAnnotations(with_mask: bool = False, poly2mask: bool = True, box_type: str = 'hbox', reduce_zero_label: bool = False, ignore_index: int = 255, **kwargs)[source]¶
Load and process the
instances
andseg_map
annotation provided by dataset.The annotation format is as the following:
{ 'instances': [ { # List of 4 numbers representing the bounding box of the # instance, in (x1, y1, x2, y2) order. 'bbox': [x1, y1, x2, y2], # Label of image classification. 'bbox_label': 1, # Used in instance/panoptic segmentation. The segmentation mask # of the instance or the information of segments. # 1. If list[list[float]], it represents a list of polygons, # one for each connected component of the object. Each # list[float] is one simple polygon in the format of # [x1, y1, ..., xn, yn] (n >= 3). The Xs and Ys are absolute # coordinates in unit of pixels. # 2. If dict, it represents the per-pixel segmentation mask in # COCO's compressed RLE format. The dict should have keys # “size” and “counts”. Can be loaded by pycocotools 'mask': list[list[float]] or dict, } ] # Filename of semantic or panoptic segmentation ground truth file. 'seg_map_path': 'a/b/c' }
After this module, the annotation has been changed to the format below:
{ # In (x1, y1, x2, y2) order, float type. N is the number of bboxes # in an image 'gt_bboxes': BaseBoxes(N, 4) # In int type. 'gt_bboxes_labels': np.ndarray(N, ) # In built-in class 'gt_masks': PolygonMasks (H, W) or BitmapMasks (H, W) # In uint8 type. 'gt_seg_map': np.ndarray (H, W) # in (x, y, v) order, float type. }
Required Keys:
height
width
instances
bbox (optional)
bbox_label
mask (optional)
ignore_flag
seg_map_path (optional)
Added Keys:
gt_bboxes (BaseBoxes[torch.float32])
gt_bboxes_labels (np.int64)
gt_masks (BitmapMasks | PolygonMasks)
gt_seg_map (np.uint8)
gt_ignore_flags (bool)
- Parameters
with_bbox (bool) – Whether to parse and load the bbox annotation. Defaults to True.
with_label (bool) – Whether to parse and load the label annotation. Defaults to True.
with_mask (bool) – Whether to parse and load the mask annotation. Default: False.
with_seg (bool) – Whether to parse and load the semantic segmentation annotation. Defaults to False.
poly2mask (bool) – Whether to convert mask to bitmap. Default: True.
box_type (str) – The box type used to wrap the bboxes. If
box_type
is None, gt_bboxes will keep being np.ndarray. Defaults to ‘hbox’.reduce_zero_label (bool) – Whether reduce all label value by 1. Usually used for datasets where 0 is background label. Defaults to False.
ignore_index (int) – The label index to be ignored. Valid only if reduce_zero_label is true. Defaults is 255.
imdecode_backend (str) – The image decoding backend type. The backend argument for :func:
mmcv.imfrombytes
. See :fun:mmcv.imfrombytes
for details. Defaults to ‘cv2’.backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
- class mmdet.datasets.transforms.LoadEmptyAnnotations(with_bbox: bool = True, with_label: bool = True, with_mask: bool = False, with_seg: bool = False, seg_ignore_label: int = 255)[source]¶
Load Empty Annotations for unlabeled images.
Added Keys: - gt_bboxes (np.float32) - gt_bboxes_labels (np.int64) - gt_masks (BitmapMasks | PolygonMasks) - gt_seg_map (np.uint8) - gt_ignore_flags (bool)
- Parameters
with_bbox (bool) – Whether to load the pseudo bbox annotation. Defaults to True.
with_label (bool) – Whether to load the pseudo label annotation. Defaults to True.
with_mask (bool) – Whether to load the pseudo mask annotation. Default: False.
with_seg (bool) – Whether to load the pseudo semantic segmentation annotation. Defaults to False.
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Defaults to 255.
- class mmdet.datasets.transforms.LoadImageFromNDArray(to_float32: bool = False, color_type: str = 'color', imdecode_backend: str = 'cv2', file_client_args: Optional[dict] = None, ignore_empty: bool = False, *, backend_args: Optional[dict] = None)[source]¶
Load an image from
results['img']
.Similar with
LoadImageFromFile
, but the image has been loaded asnp.ndarray
inresults['img']
. Can be used when loading image from webcam.Required Keys:
img
Modified Keys:
img
img_path
img_shape
ori_shape
- Parameters
to_float32 (bool) – Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False.
- class mmdet.datasets.transforms.LoadMultiChannelImageFromFiles(to_float32: bool = False, color_type: str = 'unchanged', imdecode_backend: str = 'cv2', file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None)[source]¶
Load multi-channel images from a list of separate channel files.
Required Keys:
img_path
Modified Keys:
img
img_shape
ori_shape
- Parameters
to_float32 (bool) – Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False.
color_type (str) – The flag argument for :func:
mmcv.imfrombytes
. Defaults to ‘unchanged’.imdecode_backend (str) – The image decoding backend type. The backend argument for :func:
mmcv.imfrombytes
. See :func:mmcv.imfrombytes
for details. Defaults to ‘cv2’.file_client_args (dict) – Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend in mmdet >= 3.0.0rc7. Defaults to None.
- class mmdet.datasets.transforms.LoadPanopticAnnotations(with_bbox: bool = True, with_label: bool = True, with_mask: bool = True, with_seg: bool = True, box_type: str = 'hbox', imdecode_backend: str = 'cv2', backend_args: Optional[dict] = None)[source]¶
Load multiple types of panoptic annotations.
The annotation format is as the following:
{ 'instances': [ { # List of 4 numbers representing the bounding box of the # instance, in (x1, y1, x2, y2) order. 'bbox': [x1, y1, x2, y2], # Label of image classification. 'bbox_label': 1, }, ... ] 'segments_info': [ { # id = cls_id + instance_id * INSTANCE_OFFSET 'id': int, # Contiguous category id defined in dataset. 'category': int # Thing flag. 'is_thing': bool }, ... ] # Filename of semantic or panoptic segmentation ground truth file. 'seg_map_path': 'a/b/c' }
After this module, the annotation has been changed to the format below:
{ # In (x1, y1, x2, y2) order, float type. N is the number of bboxes # in an image 'gt_bboxes': BaseBoxes(N, 4) # In int type. 'gt_bboxes_labels': np.ndarray(N, ) # In built-in class 'gt_masks': PolygonMasks (H, W) or BitmapMasks (H, W) # In uint8 type. 'gt_seg_map': np.ndarray (H, W) # in (x, y, v) order, float type. }
Required Keys:
height
width
instances - bbox - bbox_label - ignore_flag
segments_info - id - category - is_thing
seg_map_path
Added Keys:
gt_bboxes (BaseBoxes[torch.float32])
gt_bboxes_labels (np.int64)
gt_masks (BitmapMasks | PolygonMasks)
gt_seg_map (np.uint8)
gt_ignore_flags (bool)
- Parameters
with_bbox (bool) – Whether to parse and load the bbox annotation. Defaults to True.
with_label (bool) – Whether to parse and load the label annotation. Defaults to True.
with_mask (bool) – Whether to parse and load the mask annotation. Defaults to True.
with_seg (bool) – Whether to parse and load the semantic segmentation annotation. Defaults to False.
box_type (str) – The box mode used to wrap the bboxes.
imdecode_backend (str) – The image decoding backend type. The backend argument for :func:
mmcv.imfrombytes
. See :fun:mmcv.imfrombytes
for details. Defaults to ‘cv2’.backend_args (dict, optional) – Arguments to instantiate the corresponding backend in mmdet >= 3.0.0rc7. Defaults to None.
- class mmdet.datasets.transforms.LoadProposals(num_max_proposals: Optional[int] = None)[source]¶
Load proposal pipeline.
Required Keys:
proposals
Modified Keys:
proposals
- Parameters
num_max_proposals (int, optional) – Maximum number of proposals to load. If not specified, all proposals will be loaded.
- class mmdet.datasets.transforms.LoadTextAnnotations[source]¶
- transform(results: dict) dict [source]¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.LoadTrackAnnotations(**kwargs)[source]¶
Load and process the
instances
andseg_map
annotation provided by dataset. It must loadinstances_ids
which is only used in the tracking tasks. The annotation format is as the following:After this module, the annotation has been changed to the format below: .. code-block:: python
- {
# In (x1, y1, x2, y2) order, float type. N is the number of bboxes # in an image ‘gt_bboxes’: np.ndarray(N, 4)
# In int type.
- ‘gt_bboxes_labels’: np.ndarray(N, )
# In built-in class
- ‘gt_masks’: PolygonMasks (H, W) or BitmapMasks (H, W)
# In uint8 type.
- ‘gt_seg_map’: np.ndarray (H, W)
# in (x, y, v) order, float type.
}
Required Keys:
height (optional)
width (optional)
instances - bbox (optional) - bbox_label - instance_id (optional) - mask (optional) - ignore_flag (optional)
seg_map_path (optional)
Added Keys:
gt_bboxes (np.float32)
gt_bboxes_labels (np.int32)
gt_instances_ids (np.int32)
gt_masks (BitmapMasks | PolygonMasks)
gt_seg_map (np.uint8)
gt_ignore_flags (np.bool_)
- class mmdet.datasets.transforms.MinIoURandomCrop(min_ious: Sequence[float] = (0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size: float = 0.3, bbox_clip_border: bool = True)[source]¶
Random crop the image & bboxes & masks & segmentation map, the cropped patches have minimum IoU requirement with original image & bboxes & masks.
& segmentation map, the IoU threshold is randomly selected from min_ious.
Required Keys:
img
img_shape
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_ignore_flags (bool) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
img_shape
gt_bboxes
gt_bboxes_labels
gt_masks
gt_ignore_flags
gt_seg_map
- Parameters
min_ious (Sequence[float]) – minimum IoU threshold for all intersections with bounding boxes.
min_crop_size (float) – minimum crop’s size (i.e. h,w := a*h, a*w,
min_crop_size). (where a >=) –
bbox_clip_border (bool, optional) – Whether clip the objects outside the border of the image. Defaults to True.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.MixUp(img_scale: Tuple[int, int] = (640, 640), ratio_range: Tuple[float, float] = (0.5, 1.5), flip_ratio: float = 0.5, pad_val: float = 114.0, max_iters: int = 15, bbox_clip_border: bool = True)[source]¶
MixUp data augmentation.
mixup transform +------------------------------+ | mixup image | | | +--------|--------+ | | | | | | |---------------+ | | | | | | | | image | | | | | | | | | | | |-----------------+ | | pad | +------------------------------+ The mixup transform steps are as follows: 1. Another random image is picked by dataset and embedded in the top left patch(after padding and resizing) 2. The target of mixup transform is the weighted average of mixup image and origin image.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_ignore_flags (bool) (optional)
mix_results (List[dict])
Modified Keys:
img
img_shape
gt_bboxes (optional)
gt_bboxes_labels (optional)
gt_ignore_flags (optional)
- Parameters
img_scale (Sequence[int]) – Image output size after mixup pipeline. The shape order should be (width, height). Defaults to (640, 640).
ratio_range (Sequence[float]) – Scale ratio of mixup image. Defaults to (0.5, 1.5).
flip_ratio (float) – Horizontal flip ratio of mixup image. Defaults to 0.5.
pad_val (int) – Pad value. Defaults to 114.
max_iters (int) – The maximum number of iterations. If the number of iterations is greater than max_iters, but gt_bbox is still empty, then the iteration is terminated. Defaults to 15.
bbox_clip_border (bool, optional) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.Mosaic(img_scale: Tuple[int, int] = (640, 640), center_ratio_range: Tuple[float, float] = (0.5, 1.5), bbox_clip_border: bool = True, pad_val: float = 114.0, prob: float = 1.0)[source]¶
Mosaic augmentation.
Given 4 images, mosaic transform combines them into one output image. The output image is composed of the parts from each sub- image.
mosaic transform center_x +------------------------------+ | pad | pad | | +-----------+ | | | | | | | image1 |--------+ | | | | | | | | | image2 | | center_y |----+-------------+-----------| | | cropped | | |pad | image3 | image4 | | | | | +----|-------------+-----------+ | | +-------------+ The mosaic transform steps are as follows: 1. Choose the mosaic center as the intersections of 4 images 2. Get the left top image according to the index, and randomly sample another 3 images from the custom dataset. 3. Sub image will be cropped if image is larger than mosaic patch
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_ignore_flags (bool) (optional)
mix_results (List[dict])
Modified Keys:
img
img_shape
gt_bboxes (optional)
gt_bboxes_labels (optional)
gt_ignore_flags (optional)
- Parameters
img_scale (Sequence[int]) – Image size before mosaic pipeline of single image. The shape order should be (width, height). Defaults to (640, 640).
center_ratio_range (Sequence[float]) – Center ratio range of mosaic output. Defaults to (0.5, 1.5).
bbox_clip_border (bool, optional) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
pad_val (int) – Pad value. Defaults to 114.
prob (float) – Probability of applying this transformation. Defaults to 1.0.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.MultiBranch(branch_field: List[str], **branch_pipelines: dict)[source]¶
Multiple branch pipeline wrapper.
Generate multiple data-augmented versions of the same image. MultiBranch needs to specify the branch names of all pipelines of the dataset, perform corresponding data augmentation for the current branch, and return None for other branches, which ensures the consistency of return format across different samples.
- Parameters
branch_field (list) – List of branch names.
branch_pipelines (dict) – Dict of different pipeline configs to be composed.
Examples
>>> branch_field = ['sup', 'unsup_teacher', 'unsup_student'] >>> sup_pipeline = [ >>> dict(type='LoadImageFromFile'), >>> dict(type='LoadAnnotations', with_bbox=True), >>> dict(type='Resize', scale=(1333, 800), keep_ratio=True), >>> dict(type='RandomFlip', prob=0.5), >>> dict( >>> type='MultiBranch', >>> branch_field=branch_field, >>> sup=dict(type='PackDetInputs')) >>> ] >>> weak_pipeline = [ >>> dict(type='LoadImageFromFile'), >>> dict(type='LoadAnnotations', with_bbox=True), >>> dict(type='Resize', scale=(1333, 800), keep_ratio=True), >>> dict(type='RandomFlip', prob=0.0), >>> dict( >>> type='MultiBranch', >>> branch_field=branch_field, >>> sup=dict(type='PackDetInputs')) >>> ] >>> strong_pipeline = [ >>> dict(type='LoadImageFromFile'), >>> dict(type='LoadAnnotations', with_bbox=True), >>> dict(type='Resize', scale=(1333, 800), keep_ratio=True), >>> dict(type='RandomFlip', prob=1.0), >>> dict( >>> type='MultiBranch', >>> branch_field=branch_field, >>> sup=dict(type='PackDetInputs')) >>> ] >>> unsup_pipeline = [ >>> dict(type='LoadImageFromFile'), >>> dict(type='LoadEmptyAnnotations'), >>> dict( >>> type='MultiBranch', >>> branch_field=branch_field, >>> unsup_teacher=weak_pipeline, >>> unsup_student=strong_pipeline) >>> ] >>> from mmcv.transforms import Compose >>> sup_branch = Compose(sup_pipeline) >>> unsup_branch = Compose(unsup_pipeline) >>> print(sup_branch) >>> Compose( >>> LoadImageFromFile(ignore_empty=False, to_float32=False, color_type='color', imdecode_backend='cv2') # noqa >>> LoadAnnotations(with_bbox=True, with_label=True, with_mask=False, with_seg=False, poly2mask=True, imdecode_backend='cv2') # noqa >>> Resize(scale=(1333, 800), scale_factor=None, keep_ratio=True, clip_object_border=True), backend=cv2), interpolation=bilinear) # noqa >>> RandomFlip(prob=0.5, direction=horizontal) >>> MultiBranch(branch_pipelines=['sup']) >>> ) >>> print(unsup_branch) >>> Compose( >>> LoadImageFromFile(ignore_empty=False, to_float32=False, color_type='color', imdecode_backend='cv2') # noqa >>> LoadEmptyAnnotations(with_bbox=True, with_label=True, with_mask=False, with_seg=False, seg_ignore_label=255) # noqa >>> MultiBranch(branch_pipelines=['unsup_teacher', 'unsup_student']) >>> )
- transform(results: dict) dict [source]¶
Transform function to apply transforms sequentially.
- Parameters
results (dict) – Result dict from loading pipeline.
- Returns
- ‘inputs’ (Dict[str, obj:torch.Tensor]): The forward data of
models from different branches.
- ’data_sample’ (Dict[str,obj:DetDataSample]): The annotation
info of the sample from different branches.
- Return type
dict
- class mmdet.datasets.transforms.PackDetInputs(meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction'))[source]¶
Pack the inputs data for the detection / semantic segmentation / panoptic segmentation.
The
img_meta
item is always populated. The contents of theimg_meta
dictionary depends onmeta_keys
. By default this includes:img_id
: id of the imageimg_path
: path to the image fileori_shape
: original shape of the image as a tuple (h, w)img_shape
: shape of the image input to the network as a tuple (h, w). Note that images may be zero padded on the bottom/right if the batch tensor is larger than this shape.scale_factor
: a float indicating the preprocessing scaleflip
: a boolean indicating if image flip transform was usedflip_direction
: the flipping direction
- Parameters
meta_keys (Sequence[str], optional) – Meta keys to be converted to
mmcv.DataContainer
and collected indata[img_metas]
. Default:('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction')
- class mmdet.datasets.transforms.PackLineDetectionInputs[source]¶
- transform(results: Dict) Optional[Union[Dict, Tuple[List, List]]] [source]¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.PackReIDInputs(meta_keys: Sequence[str] = ())[source]¶
Pack the inputs data for the ReID. The
meta_info
item is always populated. The contents of themeta_info
dictionary depends onmeta_keys
. By default this includes:img_path
: path to the image file.ori_shape
: original shape of the image as a tuple (H, W).img_shape
: shape of the image input to the network as a tuple(H, W). Note that images may be zero padded on the bottom/right
if the batch tensor is larger than this shape.
scale
: scale of the image as a tuple (W, H).scale_factor
: a float indicating the pre-processing scale.flip
: a boolean indicating if image flip transform was used.flip_direction
: the flipping direction.
- Parameters
meta_keys (Sequence[str], optional) – The meta keys to saved in the
metainfo
of the packeddata_sample
.
- class mmdet.datasets.transforms.PackTrackInputs(meta_keys: Optional[dict] = None, default_meta_keys: tuple = ('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor', 'flip', 'flip_direction', 'frame_id', 'video_id', 'video_length', 'ori_video_length', 'instances'))[source]¶
Pack the inputs data for the multi object tracking and video instance segmentation. All the information of images are packed to
inputs
. All the information except images are packed todata_samples
. In order to get the original annotaiton and meta info, we add instances key into meta keys.- Parameters
meta_keys (Sequence[str]) – Meta keys to be collected in
data_sample.metainfo
. Defaults to None.default_meta_keys (tuple) – Default meta keys. Defaults to (‘img_id’, ‘img_path’, ‘ori_shape’, ‘img_shape’, ‘scale_factor’, ‘flip’, ‘flip_direction’, ‘frame_id’, ‘is_video_data’, ‘video_id’, ‘video_length’, ‘instances’).
- class mmdet.datasets.transforms.Pad(size: Optional[Tuple[int, int]] = None, size_divisor: Optional[int] = None, pad_to_square: bool = False, pad_val: Union[int, float, dict] = {'img': 0, 'seg': 255}, padding_mode: str = 'constant')[source]¶
Pad the image & segmentation map.
There are three padding modes: (1) pad to a fixed size and (2) pad to the minimum size that is divisible by some number. and (3)pad to square. Also, pad to square and pad to the minimum size can be used as the same time.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
img_shape
gt_masks
gt_seg_map
Added Keys:
pad_shape
pad_fixed_size
pad_size_divisor
- Parameters
size (tuple, optional) – Fixed padding size. Expected padding shape (width, height). Defaults to None.
size_divisor (int, optional) – The divisor of padded size. Defaults to None.
pad_to_square (bool) – Whether to pad the image into a square. Currently only used for YOLOX. Defaults to False.
pad_val (Number | dict[str, Number], optional) –
the pad_mode is “constant”. If it is a single number, the value to pad the image is the number and to pad the semantic segmentation map is 255. If it is a dict, it should have the following keys:
img: The value to pad the image.
seg: The value to pad the semantic segmentation map.
Defaults to dict(img=0, seg=255).
padding_mode (str) –
Type of padding. Should be: constant, edge, reflect or symmetric. Defaults to ‘constant’.
constant: pads with a constant value, this value is specified with pad_val.
edge: pads with the last value at the edge of the image.
reflect: pads with reflection of image without repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode will result in [3, 2, 1, 2, 3, 4, 3, 2].
symmetric: pads with reflection of image repeating the last value on the edge. For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode will result in [2, 1, 1, 2, 3, 4, 4, 3]
- class mmdet.datasets.transforms.PhotoMetricDistortion(brightness_delta: int = 32, contrast_range: Sequence[Union[float, int]] = (0.5, 1.5), saturation_range: Sequence[Union[float, int]] = (0.5, 1.5), hue_delta: int = 18)[source]¶
Apply photometric distortion to image sequentially, every transformation is applied with a probability of 0.5. The position of random contrast is in second or second to last.
random brightness
random contrast (mode 0)
convert color from BGR to HSV
random saturation
random hue
convert color from HSV to BGR
random contrast (mode 1)
randomly swap channels
Required Keys:
img (np.uint8)
Modified Keys:
img (np.float32)
- Parameters
brightness_delta (int) – delta of brightness.
contrast_range (sequence) – range of contrast.
saturation_range (sequence) – range of saturation.
hue_delta (int) – delta of hue.
- class mmdet.datasets.transforms.Posterize(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.0, max_mag: float = 4.0)[source]¶
Posterize images (reduce the number of bits for each color channel).
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing Posterize transformation. Defaults to 1.0.
level (int, optional) – Should be in range [0,_MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum magnitude for Posterize transformation. Defaults to 0.0.
max_mag (float) – The maximum magnitude for Posterize transformation. Defaults to 4.0.
- class mmdet.datasets.transforms.ProposalBroadcaster(transforms: List[Union[dict, Callable]] = [])[source]¶
A transform wrapper to apply the wrapped transforms to process both gt_bboxes and proposals without adding any codes. It will do the following steps:
Scatter the broadcasting targets to a list of inputs of the wrapped transforms. The type of the list should be list[dict, dict], which the first is the original inputs, the second is the processing results that gt_bboxes being rewritten by the proposals.
Apply
self.transforms
, with same random parameters, which is sharing with a context manager. The type of the outputs is a list[dict, dict].Gather the outputs, update the proposals in the first item of the outputs with the gt_bboxes in the second .
- Parameters
transforms (list, optional) – Sequence of transform object or config dict to be wrapped. Defaults to [].
- Note: The TransformBroadcaster in MMCV can achieve the same operation as
ProposalBroadcaster, but need to set more complex parameters.
Examples
>>> pipeline = [ >>> dict(type='LoadImageFromFile'), >>> dict(type='LoadProposals', num_max_proposals=2000), >>> dict(type='LoadAnnotations', with_bbox=True), >>> dict( >>> type='ProposalBroadcaster', >>> transforms=[ >>> dict(type='Resize', scale=(1333, 800), >>> keep_ratio=True), >>> dict(type='RandomFlip', prob=0.5), >>> ]), >>> dict(type='PackDetInputs')]
- class mmdet.datasets.transforms.RandAugment(aug_space: List[Union[ConfigDict, dict]] = [[{'type': 'AutoContrast'}], [{'type': 'Equalize'}], [{'type': 'Invert'}], [{'type': 'Rotate'}], [{'type': 'Posterize'}], [{'type': 'Solarize'}], [{'type': 'SolarizeAdd'}], [{'type': 'Color'}], [{'type': 'Contrast'}], [{'type': 'Brightness'}], [{'type': 'Sharpness'}], [{'type': 'ShearX'}], [{'type': 'ShearY'}], [{'type': 'TranslateX'}], [{'type': 'TranslateY'}]], aug_num: int = 2, prob: Optional[List[float]] = None)[source]¶
Rand augmentation.
This data augmentation is proposed in RandAugment: Practical automated data augmentation with a reduced search space.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_ignore_flags (bool) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
img_shape
gt_bboxes
gt_bboxes_labels
gt_masks
gt_ignore_flags
gt_seg_map
Added Keys:
homography_matrix
- Parameters
aug_space (List[List[Union[dict, ConfigDict]]]) – The augmentation space of rand augmentation. Each augmentation transform in
aug_space
is a specific transform, and is composed by several augmentations. When RandAugment is called, a random transform inaug_space
will be selected to augment images. Defaults to aug_space.aug_num (int) – Number of augmentation to apply equentially. Defaults to 2.
prob (list[float], optional) – The probabilities associated with each augmentation. The length should be equal to the augmentation space and the sum should be 1. If not given, a uniform distribution will be assumed. Defaults to None.
Examples
>>> aug_space = [ >>> dict(type='Sharpness'), >>> dict(type='ShearX'), >>> dict(type='Color'), >>> ], >>> augmentation = RandAugment(aug_space) >>> img = np.ones(100, 100, 3) >>> gt_bboxes = np.ones(10, 4) >>> results = dict(img=img, gt_bboxes=gt_bboxes) >>> results = augmentation(results)
- random_pipeline_index()¶
Return a random transform index.
- class mmdet.datasets.transforms.RandomAffine(max_rotate_degree: float = 10.0, max_translate_ratio: float = 0.1, scaling_ratio_range: Tuple[float, float] = (0.5, 1.5), max_shear_degree: float = 2.0, border: Tuple[int, int] = (0, 0), border_val: Tuple[int, int, int] = (114, 114, 114), bbox_clip_border: bool = True)[source]¶
Random affine transform data augmentation.
This operation randomly generates affine transform matrix which including rotation, translation, shear and scaling transforms.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_ignore_flags (bool) (optional)
Modified Keys:
img
img_shape
gt_bboxes (optional)
gt_bboxes_labels (optional)
gt_ignore_flags (optional)
- Parameters
max_rotate_degree (float) – Maximum degrees of rotation transform. Defaults to 10.
max_translate_ratio (float) – Maximum ratio of translation. Defaults to 0.1.
scaling_ratio_range (tuple[float]) – Min and max ratio of scaling transform. Defaults to (0.5, 1.5).
max_shear_degree (float) – Maximum degrees of shear transform. Defaults to 2.
border (tuple[int]) – Distance from width and height sides of input image to adjust output shape. Only used in mosaic dataset. Defaults to (0, 0).
border_val (tuple[int]) – Border padding values of 3 channels. Defaults to (114, 114, 114).
bbox_clip_border (bool, optional) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.RandomCenterCropPad(crop_size: Optional[tuple] = None, ratios: Optional[tuple] = (0.9, 1.0, 1.1), border: Optional[int] = 128, mean: Optional[Sequence] = None, std: Optional[Sequence] = None, to_rgb: Optional[bool] = None, test_mode: bool = False, test_pad_mode: Optional[tuple] = ('logical_or', 127), test_pad_add_pix: int = 0, bbox_clip_border: bool = True)[source]¶
Random center crop and random around padding for CornerNet.
This operation generates randomly cropped image from the original image and pads it simultaneously. Different from
RandomCrop
, the output shape may not equal tocrop_size
strictly. We choose a random value fromratios
and the output shape could be larger or smaller thancrop_size
. The padding operation is also different fromPad
, here we use around padding instead of right-bottom padding.The relation between output image (padding image) and original image:
output image +----------------------------+ | padded area | +------|----------------------------|----------+ | | cropped area | | | | +---------------+ | | | | | . center | | | original image | | | range | | | | | +---------------+ | | +------|----------------------------|----------+ | padded area | +----------------------------+
There are 5 main areas in the figure:
output image: output image of this operation, also called padding image in following instruction.
original image: input image of this operation.
padded area: non-intersect area of output image and original image.
cropped area: the overlap of output image and original image.
center range: a smaller area where random center chosen from. center range is computed by
border
and original image’s shape to avoid our random center is too close to original image’s border.
Also this operation act differently in train and test mode, the summary pipeline is listed below.
Train pipeline:
Choose a
random_ratio
fromratios
, the shape of padding image will berandom_ratio * crop_size
.Choose a
random_center
in center range.Generate padding image with center matches the
random_center
.Initialize the padding image with pixel value equals to
mean
.Copy the cropped area to padding image.
Refine annotations.
Test pipeline:
Compute output shape according to
test_pad_mode
.Generate padding image with center matches the original image center.
Initialize the padding image with pixel value equals to
mean
.Copy the
cropped area
to padding image.
Required Keys:
img (np.float32)
img_shape (tuple)
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_ignore_flags (bool) (optional)
Modified Keys:
img (np.float32)
img_shape (tuple)
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_ignore_flags (bool) (optional)
- Parameters
crop_size (tuple, optional) – expected size after crop, final size will computed according to ratio. Requires (width, height) in train mode, and None in test mode.
ratios (tuple, optional) – random select a ratio from tuple and crop image to (crop_size[0] * ratio) * (crop_size[1] * ratio). Only available in train mode. Defaults to (0.9, 1.0, 1.1).
border (int, optional) – max distance from center select area to image border. Only available in train mode. Defaults to 128.
mean (sequence, optional) – Mean values of 3 channels.
std (sequence, optional) – Std values of 3 channels.
to_rgb (bool, optional) – Whether to convert the image from BGR to RGB.
test_mode (bool) – whether involve random variables in transform. In train mode, crop_size is fixed, center coords and ratio is random selected from predefined lists. In test mode, crop_size is image’s original shape, center coords and ratio is fixed. Defaults to False.
test_pad_mode (tuple, optional) –
padding method and padding shape value, only available in test mode. Default is using ‘logical_or’ with 127 as padding shape value.
’logical_or’: final_shape = input_shape | padding_shape_value
’size_divisor’: final_shape = int( ceil(input_shape / padding_shape_value) * padding_shape_value)
Defaults to (‘logical_or’, 127).
test_pad_add_pix (int) – Extra padding pixel in test mode. Defaults to 0.
bbox_clip_border (bool) – Whether clip the objects outside the border of the image. Defaults to True.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.RandomCrop(crop_size: tuple, crop_type: str = 'absolute', allow_negative_crop: bool = False, recompute_bbox: bool = False, bbox_clip_border: bool = True)[source]¶
Random crop the image & bboxes & masks.
The absolute
crop_size
is sampled based oncrop_type
andimage_size
, then the cropped results are generated.Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_ignore_flags (bool) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
img_shape
gt_bboxes (optional)
gt_bboxes_labels (optional)
gt_masks (optional)
gt_ignore_flags (optional)
gt_seg_map (optional)
gt_instances_ids (options, only used in MOT/VIS)
Added Keys:
homography_matrix
- Parameters
crop_size (tuple) – The relative ratio or absolute pixels of (width, height).
crop_type (str, optional) – One of “relative_range”, “relative”, “absolute”, “absolute_range”. “relative” randomly crops (h * crop_size[0], w * crop_size[1]) part from an input of size (h, w). “relative_range” uniformly samples relative crop size from range [crop_size[0], 1] and [crop_size[1], 1] for height and width respectively. “absolute” crops from an input with absolute size (crop_size[0], crop_size[1]). “absolute_range” uniformly samples crop_h in range [crop_size[0], min(h, crop_size[1])] and crop_w in range [crop_size[0], min(w, crop_size[1])]. Defaults to “absolute”.
allow_negative_crop (bool, optional) – Whether to allow a crop that does not contain any bbox area. Defaults to False.
recompute_bbox (bool, optional) – Whether to re-compute the boxes based on cropped instance masks. Defaults to False.
bbox_clip_border (bool, optional) – Whether clip the objects outside the border of the image. Defaults to True.
Note
- If the image is smaller than the absolute crop size, return the
original image.
The keys for bboxes, labels and masks must be aligned. That is,
gt_bboxes
corresponds togt_labels
andgt_masks
, andgt_bboxes_ignore
corresponds togt_labels_ignore
andgt_masks_ignore
.If the crop does not contain any gt-bbox region and
allow_negative_crop
is set to False, skip this image.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.RandomErasing(n_patches: Union[int, Tuple[int, int]], ratio: Union[float, Tuple[float, float]], squared: bool = True, bbox_erased_thr: float = 0.9, img_border_value: Union[int, float, tuple] = 128, mask_border_value: int = 0, seg_ignore_label: int = 255)[source]¶
RandomErasing operation.
Random Erasing randomly selects a rectangle region in an image and erases its pixels with random values. RandomErasing.
Required Keys:
img
gt_bboxes (HorizontalBoxes[torch.float32]) (optional)
gt_bboxes_labels (np.int64) (optional)
gt_ignore_flags (bool) (optional)
gt_masks (BitmapMasks) (optional)
Modified Keys: - img - gt_bboxes (optional) - gt_bboxes_labels (optional) - gt_ignore_flags (optional) - gt_masks (optional)
- Parameters
n_patches (int or tuple[int, int]) – Number of regions to be dropped. If it is given as a tuple, number of patches will be randomly selected from the closed interval [
n_patches[0]
,n_patches[1]
].ratio (float or tuple[float, float]) – The ratio of erased regions. It can be
float
to use a fixed ratio ortuple[float, float]
to randomly choose ratio from the interval.squared (bool) – Whether to erase square region. Defaults to True.
bbox_erased_thr (float) – The threshold for the maximum area proportion of the bbox to be erased. When the proportion of the area where the bbox is erased is greater than the threshold, the bbox will be removed. Defaults to 0.9.
img_border_value (int or float or tuple) – The filled values for image border. If float, the same fill value will be used for all the three channels of image. If tuple, it should be 3 elements. Defaults to 128.
mask_border_value (int) – The fill value used for masks. Defaults to 0.
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Defaults to 255.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.RandomFlip(prob: Optional[Union[float, Iterable[float]]] = None, direction: Union[str, Sequence[Optional[str]]] = 'horizontal', swap_seg_labels: Optional[Sequence] = None)[source]¶
Flip the image & bbox & mask & segmentation map. Added or Updated keys: flip, flip_direction, img, gt_bboxes, and gt_seg_map. There are 3 flip modes:
prob
is float,direction
is string: the image will bedirection``ly flipped with probability of ``prob
. E.g.,prob=0.5
,direction='horizontal'
, then image will be horizontally flipped with probability of 0.5.
prob
is float,direction
is list of string: the image willbe
direction[i]``ly flipped with probability of ``prob/len(direction)
. E.g.,prob=0.5
,direction=['horizontal', 'vertical']
, then image will be horizontally flipped with probability of 0.25, vertically with probability of 0.25.
prob
is list of float,direction
is list of string:given
len(prob) == len(direction)
, the image will bedirection[i]``ly flipped with probability of ``prob[i]
. E.g.,prob=[0.3, 0.5]
,direction=['horizontal', 'vertical']
, then image will be horizontally flipped with probability of 0.3, vertically with probability of 0.5.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
gt_bboxes
gt_masks
gt_seg_map
Added Keys:
flip
flip_direction
homography_matrix
- Parameters
prob (float | list[float], optional) – The flipping probability. Defaults to None.
direction (str | list[str]) – The flipping direction. Options If input is a list, the length must equal
prob
. Each element inprob
indicates the flip probability of corresponding direction. Defaults to ‘horizontal’.
- class mmdet.datasets.transforms.RandomFlip_GLIP(prob: Optional[Union[float, Iterable[float]]] = None, direction: Union[str, Sequence[Optional[str]]] = 'horizontal', swap_seg_labels: Optional[Sequence] = None)[source]¶
Flip the image & bboxes & masks & segs horizontally or vertically.
When using horizontal flipping, the corresponding bbox x-coordinate needs to be additionally subtracted by one.
- class mmdet.datasets.transforms.RandomOrder(transforms: Union[Dict, Callable[[Dict], Dict], Sequence[Union[Dict, Callable[[Dict], Dict]]]])[source]¶
Shuffle the transform Sequence.
- class mmdet.datasets.transforms.RandomSamplingNegPos(tokenizer_name, num_sample_negative=85, max_tokens=256, full_sampling_prob=0.5, label_map_file=None)[source]¶
- transform(results: dict) dict [source]¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.RandomShift(prob: float = 0.5, max_shift_px: int = 32, filter_thr_px: int = 1)[source]¶
Shift the image and box given shift pixels and probability.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32])
gt_bboxes_labels (np.int64)
gt_ignore_flags (bool) (optional)
Modified Keys:
img
gt_bboxes
gt_bboxes_labels
gt_ignore_flags (bool) (optional)
- Parameters
prob (float) – Probability of shifts. Defaults to 0.5.
max_shift_px (int) – The max pixels for shifting. Defaults to 32.
filter_thr_px (int) – The width and height threshold for filtering. The bbox and the rest of the targets below the width and height threshold will be filtered. Defaults to 1.
- transform(results: dict, *args, **kwargs) dict ¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.Resize(scale: Optional[Union[int, Tuple[int, int]]] = None, scale_factor: Optional[Union[float, Tuple[float, float]]] = None, keep_ratio: bool = False, clip_object_border: bool = True, backend: str = 'cv2', interpolation='bilinear')[source]¶
Resize images & bbox & seg.
This transform resizes the input image according to
scale
orscale_factor
. Bboxes, masks, and seg map are then resized with the same scale factor. ifscale
andscale_factor
are both set, it will usescale
to resize.Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
img_shape
gt_bboxes
gt_masks
gt_seg_map
Added Keys:
scale
scale_factor
keep_ratio
homography_matrix
- Parameters
scale (int or tuple) – Images scales for resizing. Defaults to None
scale_factor (float or tuple[float]) – Scale factors for resizing. Defaults to None.
keep_ratio (bool) – Whether to keep the aspect ratio when resizing the image. Defaults to False.
clip_object_border (bool) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.
backend (str) – Image resize backend, choices are ‘cv2’ and ‘pillow’. These two backends generates slightly different results. Defaults to ‘cv2’.
interpolation (str) – Interpolation method, accepted values are “nearest”, “bilinear”, “bicubic”, “area”, “lanczos” for ‘cv2’ backend, “nearest”, “bilinear” for ‘pillow’ backend. Defaults to ‘bilinear’.
- transform(results: dict, *args, **kwargs) dict ¶
Transform function to resize images, bounding boxes, semantic segmentation map and keypoints.
- Parameters
results (dict) – Result dict from loading pipeline.
- Returns
Resized results, ‘img’, ‘gt_bboxes’, ‘gt_seg_map’, ‘gt_keypoints’, ‘scale’, ‘scale_factor’, ‘img_shape’, and ‘keep_ratio’ keys are updated in result dict.
- Return type
dict
- class mmdet.datasets.transforms.ResizeShortestEdge(scale: Union[int, Tuple[int, int]], max_size: Optional[int] = None, resize_type: str = 'Resize', **resize_kwargs)[source]¶
Resize the image and mask while keeping the aspect ratio unchanged.
Modified from https://github.com/facebookresearch/detectron2/blob/main/detectron2/data/transforms/augmentation_impl.py#L130 # noqa:E501
This transform attempts to scale the shorter edge to the given scale, as long as the longer edge does not exceed max_size. If max_size is reached, then downscale so that the longer edge does not exceed max_size.
- Required Keys:
img
gt_seg_map (optional)
- Modified Keys:
img
img_shape
gt_seg_map (optional))
- Added Keys:
scale
scale_factor
keep_ratio
- Parameters
scale (Union[int, Tuple[int, int]]) – The target short edge length. If it’s tuple, will select the min value as the short edge length.
max_size (int) – The maximum allowed longest edge length.
- transform(results: dict) dict [source]¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
- class mmdet.datasets.transforms.Rotate(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.0, max_mag: float = 30.0, reversal_prob: float = 0.5, img_border_value: Union[int, float, tuple] = 128, mask_border_value: int = 0, seg_ignore_label: int = 255, interpolation: str = 'bilinear')[source]¶
Rotate the images, bboxes, masks and segmentation map.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
gt_bboxes
gt_masks
gt_seg_map
Added Keys:
homography_matrix
- Parameters
prob (float) – The probability for perform transformation and should be in range 0 to 1. Defaults to 1.0.
level (int, optional) – The level should be in range [0, _MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The maximum angle for rotation. Defaults to 0.0.
max_mag (float) – The maximum angle for rotation. Defaults to 30.0.
reversal_prob (float) – The probability that reverses the rotation magnitude. Should be in range [0,1]. Defaults to 0.5.
img_border_value (int | float | tuple) – The filled values for image border. If float, the same fill value will be used for all the three channels of image. If tuple, it should be 3 elements. Defaults to 128.
mask_border_value (int) – The fill value used for masks. Defaults to 0.
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Defaults to 255.interpolation (str) – Interpolation method, accepted values are “nearest”, “bilinear”, “bicubic”, “area”, “lanczos” for ‘cv2’ backend, “nearest”, “bilinear” for ‘pillow’ backend. Defaults to ‘bilinear’.
- class mmdet.datasets.transforms.SegRescale(scale_factor: float = 1, backend: str = 'cv2')[source]¶
Rescale semantic segmentation maps.
This transform rescale the
gt_seg_map
according toscale_factor
.Required Keys:
gt_seg_map
Modified Keys:
gt_seg_map
- Parameters
scale_factor (float) – The scale factor of the final output. Defaults to 1.
backend (str) – Image rescale backend, choices are ‘cv2’ and ‘pillow’. These two backends generates slightly different results. Defaults to ‘cv2’.
- class mmdet.datasets.transforms.Sharpness(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.1, max_mag: float = 1.9)[source]¶
Adjust images sharpness. A positive magnitude would enhance the sharpness and a negative magnitude would make the image blurry. A magnitude=0 gives the origin img.
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing Sharpness transformation. Defaults to 1.0.
level (int, optional) – Should be in range [0,_MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum magnitude for Sharpness transformation. Defaults to 0.1.
max_mag (float) – The maximum magnitude for Sharpness transformation. Defaults to 1.9.
- class mmdet.datasets.transforms.ShearX(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.0, max_mag: float = 30.0, reversal_prob: float = 0.5, img_border_value: Union[int, float, tuple] = 128, mask_border_value: int = 0, seg_ignore_label: int = 255, interpolation: str = 'bilinear')[source]¶
Shear the images, bboxes, masks and segmentation map horizontally.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
gt_bboxes
gt_masks
gt_seg_map
Added Keys:
homography_matrix
- Parameters
prob (float) – The probability for performing Shear and should be in range [0, 1]. Defaults to 1.0.
level (int, optional) – The level should be in range [0, _MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum angle for the horizontal shear. Defaults to 0.0.
max_mag (float) – The maximum angle for the horizontal shear. Defaults to 30.0.
reversal_prob (float) – The probability that reverses the horizontal shear magnitude. Should be in range [0,1]. Defaults to 0.5.
img_border_value (int | float | tuple) – The filled values for image border. If float, the same fill value will be used for all the three channels of image. If tuple, it should be 3 elements. Defaults to 128.
mask_border_value (int) – The fill value used for masks. Defaults to 0.
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Defaults to 255.interpolation (str) – Interpolation method, accepted values are “nearest”, “bilinear”, “bicubic”, “area”, “lanczos” for ‘cv2’ backend, “nearest”, “bilinear” for ‘pillow’ backend. Defaults to ‘bilinear’.
- class mmdet.datasets.transforms.ShearY(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.0, max_mag: float = 30.0, reversal_prob: float = 0.5, img_border_value: Union[int, float, tuple] = 128, mask_border_value: int = 0, seg_ignore_label: int = 255, interpolation: str = 'bilinear')[source]¶
Shear the images, bboxes, masks and segmentation map vertically.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
gt_bboxes
gt_masks
gt_seg_map
Added Keys:
homography_matrix
- Parameters
prob (float) – The probability for performing ShearY and should be in range [0, 1]. Defaults to 1.0.
level (int, optional) – The level should be in range [0,_MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum angle for the vertical shear. Defaults to 0.0.
max_mag (float) – The maximum angle for the vertical shear. Defaults to 30.0.
reversal_prob (float) – The probability that reverses the vertical shear magnitude. Should be in range [0,1]. Defaults to 0.5.
img_border_value (int | float | tuple) – The filled values for image border. If float, the same fill value will be used for all the three channels of image. If tuple, it should be 3 elements. Defaults to 128.
mask_border_value (int) – The fill value used for masks. Defaults to 0.
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Defaults to 255.interpolation (str) – Interpolation method, accepted values are “nearest”, “bilinear”, “bicubic”, “area”, “lanczos” for ‘cv2’ backend, “nearest”, “bilinear” for ‘pillow’ backend. Defaults to ‘bilinear’.
- class mmdet.datasets.transforms.Solarize(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.0, max_mag: float = 256.0)[source]¶
Solarize images (Invert all pixels above a threshold value of magnitude.).
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing Solarize transformation. Defaults to 1.0.
level (int, optional) – Should be in range [0,_MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum magnitude for Solarize transformation. Defaults to 0.0.
max_mag (float) – The maximum magnitude for Solarize transformation. Defaults to 256.0.
- class mmdet.datasets.transforms.SolarizeAdd(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.0, max_mag: float = 110.0)[source]¶
SolarizeAdd images. For each pixel in the image that is less than 128, add an additional amount to it decided by the magnitude.
Required Keys:
img
Modified Keys:
img
- Parameters
prob (float) – The probability for performing SolarizeAdd transformation. Defaults to 1.0.
level (int, optional) – Should be in range [0,_MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum magnitude for SolarizeAdd transformation. Defaults to 0.0.
max_mag (float) – The maximum magnitude for SolarizeAdd transformation. Defaults to 110.0.
- class mmdet.datasets.transforms.ToTensor(keys)[source]¶
Convert some results to
torch.Tensor
by given keys.- Parameters
keys (Sequence[str]) – Keys that need to be converted to Tensor.
- class mmdet.datasets.transforms.TranslateX(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.0, max_mag: float = 0.1, reversal_prob: float = 0.5, img_border_value: Union[int, float, tuple] = 128, mask_border_value: int = 0, seg_ignore_label: int = 255, interpolation: str = 'bilinear')[source]¶
Translate the images, bboxes, masks and segmentation map horizontally.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
gt_bboxes
gt_masks
gt_seg_map
Added Keys:
homography_matrix
- Parameters
prob (float) – The probability for perform transformation and should be in range 0 to 1. Defaults to 1.0.
level (int, optional) – The level should be in range [0, _MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum pixel’s offset ratio for horizontal translation. Defaults to 0.0.
max_mag (float) – The maximum pixel’s offset ratio for horizontal translation. Defaults to 0.1.
reversal_prob (float) – The probability that reverses the horizontal translation magnitude. Should be in range [0,1]. Defaults to 0.5.
img_border_value (int | float | tuple) – The filled values for image border. If float, the same fill value will be used for all the three channels of image. If tuple, it should be 3 elements. Defaults to 128.
mask_border_value (int) – The fill value used for masks. Defaults to 0.
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Defaults to 255.interpolation (str) – Interpolation method, accepted values are “nearest”, “bilinear”, “bicubic”, “area”, “lanczos” for ‘cv2’ backend, “nearest”, “bilinear” for ‘pillow’ backend. Defaults to ‘bilinear’.
- class mmdet.datasets.transforms.TranslateY(prob: float = 1.0, level: Optional[int] = None, min_mag: float = 0.0, max_mag: float = 0.1, reversal_prob: float = 0.5, img_border_value: Union[int, float, tuple] = 128, mask_border_value: int = 0, seg_ignore_label: int = 255, interpolation: str = 'bilinear')[source]¶
Translate the images, bboxes, masks and segmentation map vertically.
Required Keys:
img
gt_bboxes (BaseBoxes[torch.float32]) (optional)
gt_masks (BitmapMasks | PolygonMasks) (optional)
gt_seg_map (np.uint8) (optional)
Modified Keys:
img
gt_bboxes
gt_masks
gt_seg_map
Added Keys:
homography_matrix
- Parameters
prob (float) – The probability for perform transformation and should be in range 0 to 1. Defaults to 1.0.
level (int, optional) – The level should be in range [0, _MAX_LEVEL]. If level is None, it will generate from [0, _MAX_LEVEL] randomly. Defaults to None.
min_mag (float) – The minimum pixel’s offset ratio for vertical translation. Defaults to 0.0.
max_mag (float) – The maximum pixel’s offset ratio for vertical translation. Defaults to 0.1.
reversal_prob (float) – The probability that reverses the vertical translation magnitude. Should be in range [0,1]. Defaults to 0.5.
img_border_value (int | float | tuple) – The filled values for image border. If float, the same fill value will be used for all the three channels of image. If tuple, it should be 3 elements. Defaults to 128.
mask_border_value (int) – The fill value used for masks. Defaults to 0.
seg_ignore_label (int) – The fill value used for segmentation map. Note this value must equals
ignore_label
insemantic_head
of the corresponding config. Defaults to 255.interpolation (str) – Interpolation method, accepted values are “nearest”, “bilinear”, “bicubic”, “area”, “lanczos” for ‘cv2’ backend, “nearest”, “bilinear” for ‘pillow’ backend. Defaults to ‘bilinear’.
- class mmdet.datasets.transforms.Transpose(keys, order)[source]¶
Transpose some results by given keys.
- Parameters
keys (Sequence[str]) – Keys of results to be transposed.
order (Sequence[int]) – Order of transpose.
- class mmdet.datasets.transforms.UniformRefFrameSample(num_ref_imgs: int = 1, frame_range: Union[int, List[int]] = 10, filter_key_img: bool = True, collect_video_keys: List[str] = ['video_id', 'video_length'])[source]¶
Uniformly sample reference frames.
- Parameters
num_ref_imgs (int) – Number of reference frames to be sampled.
frame_range (int | list[int]) – Range of frames to be sampled around key frame. If int, the range is [-frame_range, frame_range]. Defaults to 10.
filter_key_img (bool) – Whether to filter the key frame when sampling reference frames. Defaults to True.
collect_video_keys (list[str]) – The keys of video info to be collected.
- class mmdet.datasets.transforms.YOLOXHSVRandomAug(hue_delta: int = 5, saturation_delta: int = 30, value_delta: int = 30)[source]¶
Apply HSV augmentation to image sequentially. It is referenced from https://github.com/Megvii- BaseDetection/YOLOX/blob/main/yolox/data/data_augment.py#L21.
Required Keys:
img
Modified Keys:
img
- Parameters
hue_delta (int) – delta of hue. Defaults to 5.
saturation_delta (int) – delta of saturation. Defaults to 30.
value_delta (int) – delat of value. Defaults to 30.
- transform(results: dict) dict [source]¶
The transform function. All subclass of BaseTransform should override this method.
This function takes the result dict as the input, and can add new items to the dict or modify existing items in the dict. And the result dict will be returned in the end, which allows to concate multiple transforms into a pipeline.
- Parameters
results (dict) – The result dict.
- Returns
The result dict.
- Return type
dict
mmdet.engine¶
hooks¶
- class mmdet.engine.hooks.CheckInvalidLossHook(interval: int = 50)[source]¶
Check invalid loss hook.
This hook will regularly check whether the loss is valid during training.
- Parameters
interval (int) – Checking interval (every k iterations). Default: 50.
- after_train_iter(runner: Runner, batch_idx: int, data_batch: Optional[dict] = None, outputs: Optional[dict] = None) None [source]¶
Regularly check whether the loss is valid every n iterations.
- Parameters
runner (
Runner
) – The runner of the training process.batch_idx (int) – The index of the current batch in the train loop.
data_batch (dict, Optional) – Data from dataloader. Defaults to None.
outputs (dict, Optional) – Outputs from model. Defaults to None.
- class mmdet.engine.hooks.DetVisualizationHook(draw: bool = False, interval: int = 50, score_thr: float = 0.3, show: bool = False, wait_time: float = 0.0, test_out_dir: Optional[str] = None, backend_args: Optional[dict] = None)[source]¶
Detection Visualization Hook. Used to visualize validation and testing process prediction results.
In the testing phase:
- If
show
is True, it means that only the prediction results are visualized without storing data, so
vis_backends
needs to be excluded.
- If
- If
test_out_dir
is specified, it means that the prediction results need to be saved to
test_out_dir
. In order to avoid vis_backends also storing data, sovis_backends
needs to be excluded.
- If
vis_backends
takes effect if the user does not specifyshow
and test_out_dir`. You can set
vis_backends
to WandbVisBackend or TensorboardVisBackend to store the prediction result in Wandb or Tensorboard.
- Parameters
draw (bool) – whether to draw prediction results. If it is False, it means that no drawing will be done. Defaults to False.
interval (int) – The interval of visualization. Defaults to 50.
score_thr (float) – The threshold to visualize the bboxes and masks. Defaults to 0.3.
show (bool) – Whether to display the drawn image. Default to False.
wait_time (float) – The interval of show (s). Defaults to 0.
test_out_dir (str, optional) – directory where painted images will be saved in testing process.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
- after_test_iter(runner: Runner, batch_idx: int, data_batch: dict, outputs: Sequence[DetDataSample]) None [source]¶
Run after every testing iterations.
- Parameters
runner (
Runner
) – The runner of the testing process.batch_idx (int) – The index of the current batch in the val loop.
data_batch (dict) – Data from dataloader.
outputs (Sequence[
DetDataSample
]) – A batch of data samples that contain annotations and predictions.
- after_val_iter(runner: Runner, batch_idx: int, data_batch: dict, outputs: Sequence[DetDataSample]) None [source]¶
Run after every
self.interval
validation iterations.- Parameters
runner (
Runner
) – The runner of the validation process.batch_idx (int) – The index of the current batch in the val loop.
data_batch (dict) – Data from dataloader.
outputs (Sequence[
DetDataSample
]]) – A batch of data samples that contain annotations and predictions.
- class mmdet.engine.hooks.GroundingVisualizationHook(draw: bool = False, interval: int = 50, score_thr: float = 0.3, show: bool = False, wait_time: float = 0.0, test_out_dir: Optional[str] = None, backend_args: Optional[dict] = None)[source]¶
- after_test_iter(runner: Runner, batch_idx: int, data_batch: dict, outputs: Sequence[DetDataSample]) None [source]¶
Run after every testing iterations.
- Parameters
runner (
Runner
) – The runner of the testing process.batch_idx (int) – The index of the current batch in the val loop.
data_batch (dict) – Data from dataloader.
outputs (Sequence[
DetDataSample
]) – A batch of data samples that contain annotations and predictions.
- class mmdet.engine.hooks.MeanTeacherHook(momentum: float = 0.001, interval: int = 1, skip_buffer=True)[source]¶
Mean Teacher Hook.
Mean Teacher is an efficient semi-supervised learning method in Mean Teacher. This method requires two models with exactly the same structure, as the student model and the teacher model, respectively. The student model updates the parameters through gradient descent, and the teacher model updates the parameters through exponential moving average of the student model. Compared with the student model, the teacher model is smoother and accumulates more knowledge.
- Parameters
momentum (float) –
- The momentum used for updating teacher’s parameter.
Teacher’s parameter are updated with the formula:
- teacher = (1-momentum) * teacher + momentum * student.
Defaults to 0.001.
interval (int) – Update teacher’s parameter every interval iteration. Defaults to 1.
skip_buffers (bool) – Whether to skip the model buffers, such as batchnorm running stats (running_mean, running_var), it does not perform the ema operation. Default to True.
- class mmdet.engine.hooks.MemoryProfilerHook(interval: int = 50)[source]¶
Memory profiler hook recording memory information including virtual memory, swap memory, and the memory of the current process.
- Parameters
interval (int) – Checking interval (every k iterations). Default: 50.
- after_test_iter(runner: Runner, batch_idx: int, data_batch: Optional[dict] = None, outputs: Optional[Sequence[DetDataSample]] = None) None [source]¶
Regularly record memory information.
- Parameters
runner (
Runner
) – The runner of the testing process.batch_idx (int) – The index of the current batch in the test loop.
data_batch (dict, optional) – Data from dataloader. Defaults to None.
outputs (Sequence[
DetDataSample
], optional) – Outputs from model. Defaults to None.
- after_train_iter(runner: Runner, batch_idx: int, data_batch: Optional[dict] = None, outputs: Optional[dict] = None) None [source]¶
Regularly record memory information.
- Parameters
runner (
Runner
) – The runner of the training process.batch_idx (int) – The index of the current batch in the train loop.
data_batch (dict, optional) – Data from dataloader. Defaults to None.
outputs (dict, optional) – Outputs from model. Defaults to None.
- after_val_iter(runner: Runner, batch_idx: int, data_batch: Optional[dict] = None, outputs: Optional[Sequence[DetDataSample]] = None) None [source]¶
Regularly record memory information.
- Parameters
runner (
Runner
) – The runner of the validation process.batch_idx (int) – The index of the current batch in the val loop.
data_batch (dict, optional) – Data from dataloader. Defaults to None.
outputs (Sequence[
DetDataSample
], optional) – Outputs from model. Defaults to None.
- class mmdet.engine.hooks.NumClassCheckHook[source]¶
Check whether the num_classes in head matches the length of classes in dataset.metainfo.
- class mmdet.engine.hooks.PipelineSwitchHook(switch_epoch, switch_pipeline)[source]¶
Switch data pipeline at switch_epoch.
- Parameters
switch_epoch (int) – switch pipeline at this epoch.
switch_pipeline (list[dict]) – the pipeline to switch to.
- class mmdet.engine.hooks.SyncNormHook[source]¶
Synchronize Norm states before validation, currently used in YOLOX.
- class mmdet.engine.hooks.TrackVisualizationHook(draw: bool = False, frame_interval: int = 30, score_thr: float = 0.3, show: bool = False, wait_time: float = 0.0, test_out_dir: Optional[str] = None, backend_args: Optional[dict] = None)[source]¶
Tracking Visualization Hook. Used to visualize validation and testing process prediction results.
In the testing phase:
- If
show
is True, it means that only the prediction results are visualized without storing data, so
vis_backends
needs to be excluded.
- If
- If
test_out_dir
is specified, it means that the prediction results need to be saved to
test_out_dir
. In order to avoid vis_backends also storing data, sovis_backends
needs to be excluded.
- If
vis_backends
takes effect if the user does not specifyshow
and test_out_dir`. You can set
vis_backends
to WandbVisBackend or TensorboardVisBackend to store the prediction result in Wandb or Tensorboard.
- Parameters
draw (bool) – whether to draw prediction results. If it is False, it means that no drawing will be done. Defaults to False.
frame_interval (int) – The interval of visualization. Defaults to 30.
score_thr (float) – The threshold to visualize the bboxes and masks. Defaults to 0.3.
show (bool) – Whether to display the drawn image. Default to False.
wait_time (float) – The interval of show (s). Defaults to 0.
test_out_dir (str, optional) – directory where painted images will be saved in testing process.
backend_args (dict) – Arguments to instantiate a file client. Defaults to
None
.
- after_test_iter(runner: Runner, batch_idx: int, data_batch: dict, outputs: Sequence[TrackDataSample]) None [source]¶
Run after every testing iteration.
- Parameters
runner (
Runner
) – The runner of the testing process.batch_idx (int) – The index of the current batch in the test loop.
data_batch (dict) – Data from dataloader.
outputs (Sequence[
TrackDataSample
]) – Outputs from model.
- after_val_iter(runner: Runner, batch_idx: int, data_batch: dict, outputs: Sequence[TrackDataSample]) None [source]¶
Run after every
self.interval
validation iteration.- Parameters
runner (
Runner
) – The runner of the validation process.batch_idx (int) – The index of the current batch in the val loop.
data_batch (dict) – Data from dataloader.
outputs (Sequence[
TrackDataSample
]) – Outputs from model.
- visualize_single_image(img_data_sample: DetDataSample, step: int) None [source]¶
- Parameters
img_data_sample (DetDataSample) – single image output.
step (int) – The index of the current image.
- class mmdet.engine.hooks.TrainAugmentDetVisualizationHook(draw: bool = False, interval: int = 50, show: bool = False, wait_time: float = 0.0, backend_args: Optional[dict] = None)[source]¶
Detection Visualization Hook. Used to visualize train augmentation.
In the training phase:
- If
show
is True, it means that only the prediction results are visualized without storing data, so
vis_backends
needs to be excluded.
- If
vis_backends
takes effect if the user does not specifyshow
.You can set
vis_backends
to WandbVisBackend or TensorboardVisBackend to store the prediction result in Wandb or Tensorboard.
- Parameters
draw (bool) – whether to draw prediction results. If it is False, it means that no drawing will be done. Defaults to False.
interval (int) – The interval of visualization. Defaults to 50.
show (bool) – Whether to display the drawn image. Default to False.
wait_time (float) – The interval of show (s). Defaults to 0.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
- after_train_iter(runner: Runner, batch_idx: int, data_batch: Optional[dict] = None, outputs: Optional[dict] = None) None [source]¶
Regularly check whether the loss is valid every n iterations.
- Parameters
runner (
Runner
) – The runner of the training process.batch_idx (int) – The index of the current batch in the train loop.
data_batch (dict, Optional) – Data from dataloader. Defaults to None.
outputs (dict, Optional) – Outputs from model. Defaults to None.
- class mmdet.engine.hooks.YOLOXModeSwitchHook(num_last_epochs: int = 15, skip_type_keys: Sequence[str] = ('Mosaic', 'RandomAffine', 'MixUp'))[source]¶
Switch the mode of YOLOX during training.
This hook turns off the mosaic and mixup data augmentation and switches to use L1 loss in bbox_head.
- Parameters
num_last_epochs – The number of latter epochs in the end of the training to close the data augmentation and switch to L1 loss. Defaults to 15.
optimizers¶
- class mmdet.engine.optimizers.LearningRateDecayOptimizerConstructor(optim_wrapper_cfg: dict, paramwise_cfg: Optional[dict] = None)[source]¶
- add_params(params: List[dict], module: Module, **kwargs) None [source]¶
Add all parameters of module to the params list.
The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg.
- Parameters
params (list[dict]) – A list of param groups, it will be modified in place.
module (nn.Module) – The module to be added.
runner¶
schedulers¶
- class mmdet.engine.schedulers.QuadraticWarmupLR(optimizer, *args, **kwargs)[source]¶
Warm up the learning rate of each parameter group by quadratic formula.
- Parameters
optimizer (Optimizer) – Wrapped optimizer.
begin (int) – Step at which to start updating the parameters. Defaults to 0.
end (int) – Step at which to stop updating the parameters. Defaults to INF.
last_step (int) – The index of last step. Used for resume without state dict. Defaults to -1.
by_epoch (bool) – Whether the scheduled parameters are updated by epochs. Defaults to True.
verbose (bool) – Whether to print the value for each update. Defaults to False.
- class mmdet.engine.schedulers.QuadraticWarmupMomentum(optimizer, *args, **kwargs)[source]¶
Warm up the momentum value of each parameter group by quadratic formula.
- Parameters
optimizer (Optimizer) – Wrapped optimizer.
begin (int) – Step at which to start updating the parameters. Defaults to 0.
end (int) – Step at which to stop updating the parameters. Defaults to INF.
last_step (int) – The index of last step. Used for resume without state dict. Defaults to -1.
by_epoch (bool) – Whether the scheduled parameters are updated by epochs. Defaults to True.
verbose (bool) – Whether to print the value for each update. Defaults to False.
- class mmdet.engine.schedulers.QuadraticWarmupParamScheduler(optimizer: Optimizer, param_name: str, begin: int = 0, end: int = 1000000000, last_step: int = -1, by_epoch: bool = True, verbose: bool = False)[source]¶
Warm up the parameter value of each parameter group by quadratic formula:
\[X_{t} = X_{t-1} + \frac{2t+1}{{(end-begin)}^{2}} \times X_{base}\]- Parameters
optimizer (Optimizer) – Wrapped optimizer.
param_name (str) – Name of the parameter to be adjusted, such as
lr
,momentum
.begin (int) – Step at which to start updating the parameters. Defaults to 0.
end (int) – Step at which to stop updating the parameters. Defaults to INF.
last_step (int) – The index of last step. Used for resume without state dict. Defaults to -1.
by_epoch (bool) – Whether the scheduled parameters are updated by epochs. Defaults to True.
verbose (bool) – Whether to print the value for each update. Defaults to False.
mmdet.evaluation¶
functional¶
- mmdet.evaluation.functional.average_precision(recalls, precisions, mode='area')[source]¶
Calculate average precision (for single or multiple scales).
- Parameters
recalls (ndarray) – shape (num_scales, num_dets) or (num_dets, )
precisions (ndarray) – shape (num_scales, num_dets) or (num_dets, )
mode (str) – ‘area’ or ‘11points’, ‘area’ means calculating the area under precision-recall curve, ‘11points’ means calculating the average precision of recalls at [0, 0.1, …, 1]
- Returns
calculated average precision
- Return type
float or ndarray
- mmdet.evaluation.functional.bbox_overlaps(bboxes1, bboxes2, mode='iou', eps=1e-06, use_legacy_coordinate=False)[source]¶
Calculate the ious between each bbox of bboxes1 and bboxes2.
- Parameters
bboxes1 (ndarray) – Shape (n, 4)
bboxes2 (ndarray) – Shape (k, 4)
mode (str) – IOU (intersection over union) or IOF (intersection over foreground)
use_legacy_coordinate (bool) – Whether to use coordinate system in mmdet v1.x. which means width, height should be calculated as ‘x2 - x1 + 1` and ‘y2 - y1 + 1’ respectively. Note when function is used in VOCDataset, it should be True to align with the official implementation http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCdevkit_18-May-2011.tar Default: False.
- Returns
Shape (n, k)
- Return type
ious (ndarray)
- mmdet.evaluation.functional.eval_map(det_results, annotations, scale_ranges=None, iou_thr=0.5, ioa_thr=None, dataset=None, logger=None, tpfp_fn=None, nproc=4, use_legacy_coordinate=False, use_group_of=False, eval_mode='area')[source]¶
Evaluate mAP of a dataset.
- Parameters
det_results (list[list]) – [[cls1_det, cls2_det, …], …]. The outer list indicates images, and the inner list indicates per-class detected bboxes.
annotations (list[dict]) –
Ground truth annotations where each item of the list indicates an image. Keys of annotations are:
bboxes: numpy array of shape (n, 4)
labels: numpy array of shape (n, )
bboxes_ignore (optional): numpy array of shape (k, 4)
labels_ignore (optional): numpy array of shape (k, )
scale_ranges (list[tuple] | None) – Range of scales to be evaluated, in the format [(min1, max1), (min2, max2), …]. A range of (32, 64) means the area range between (32**2, 64**2). Defaults to None.
iou_thr (float) – IoU threshold to be considered as matched. Defaults to 0.5.
ioa_thr (float | None) – IoA threshold to be considered as matched, which only used in OpenImages evaluation. Defaults to None.
dataset (list[str] | str | None) – Dataset name or dataset classes, there are minor differences in metrics for different datasets, e.g. “voc”, “imagenet_det”, etc. Defaults to None.
logger (logging.Logger | str | None) – The way to print the mAP summary. See mmengine.logging.print_log() for details. Defaults to None.
tpfp_fn (callable | None) – The function used to determine true/ false positives. If None,
tpfp_default()
is used as default unless dataset is ‘det’ or ‘vid’ (tpfp_imagenet()
in this case). If it is given as a function, then this function is used to evaluate tp & fp. Default None.nproc (int) – Processes used for computing TP and FP. Defaults to 4.
use_legacy_coordinate (bool) – Whether to use coordinate system in mmdet v1.x. which means width, height should be calculated as ‘x2 - x1 + 1` and ‘y2 - y1 + 1’ respectively. Defaults to False.
use_group_of (bool) – Whether to use group of when calculate TP and FP, which only used in OpenImages evaluation. Defaults to False.
eval_mode (str) – ‘area’ or ‘11points’, ‘area’ means calculating the area under precision-recall curve, ‘11points’ means calculating the average precision of recalls at [0, 0.1, …, 1], PASCAL VOC2007 uses 11points as default evaluate mode, while others are ‘area’. Defaults to ‘area’.
- Returns
(mAP, [dict, dict, …])
- Return type
tuple
- mmdet.evaluation.functional.eval_recalls(gts, proposals, proposal_nums=None, iou_thrs=0.5, logger=None, use_legacy_coordinate=False)[source]¶
Calculate recalls.
- Parameters
gts (list[ndarray]) – a list of arrays of shape (n, 4)
proposals (list[ndarray]) – a list of arrays of shape (k, 4) or (k, 5)
proposal_nums (int | Sequence[int]) – Top N proposals to be evaluated.
iou_thrs (float | Sequence[float]) – IoU thresholds. Default: 0.5.
logger (logging.Logger | str | None) – The way to print the recall summary. See mmengine.logging.print_log() for details. Default: None.
use_legacy_coordinate (bool) – Whether use coordinate system in mmdet v1.x. “1” was added to both height and width which means w, h should be computed as ‘x2 - x1 + 1` and ‘y2 - y1 + 1’. Default: False.
- Returns
recalls of different ious and proposal nums
- Return type
ndarray
- mmdet.evaluation.functional.evaluateImgLists(prediction_list: list, groundtruth_list: list, args: CArgs, backend_args: Optional[dict] = None, dump_matches: bool = False) dict [source]¶
A wrapper of obj:``cityscapesscripts.evaluation.
evalInstanceLevelSemanticLabeling.evaluateImgLists``. Support loading groundtruth image from file backend. :param prediction_list: A list of prediction txt file. :type prediction_list: list :param groundtruth_list: A list of groundtruth image file. :type groundtruth_list: list :param args: A global object setting in
obj:
cityscapesscripts.evaluation. evalInstanceLevelSemanticLabeling
- Parameters
backend_args (dict, optional) – Arguments to instantiate the preifx of uri corresponding backend. Defaults to None.
dump_matches (bool) – whether dump matches.json. Defaults to False.
- Returns
The computed metric.
- Return type
dict
- mmdet.evaluation.functional.oid_challenge_classes() list [source]¶
Class names of Open Images Challenge.
- mmdet.evaluation.functional.plot_iou_recall(recalls, iou_thrs)[source]¶
Plot IoU-Recalls curve.
- Parameters
recalls (ndarray or list) – shape (k,)
iou_thrs (ndarray or list) – same shape as recalls
- mmdet.evaluation.functional.plot_num_recall(recalls, proposal_nums)[source]¶
Plot Proposal_num-Recalls curve.
- Parameters
recalls (ndarray or list) – shape (k,)
proposal_nums (ndarray or list) – same shape as recalls
- mmdet.evaluation.functional.pq_compute_multi_core(matched_annotations_list, gt_folder, pred_folder, categories, backend_args=None, nproc=32)[source]¶
Evaluate the metrics of Panoptic Segmentation with multithreading.
Same as the function with the same name in panopticapi.
- Parameters
matched_annotations_list (list) – The matched annotation list. Each element is a tuple of annotations of the same image with the format (gt_anns, pred_anns).
gt_folder (str) – The path of the ground truth images.
pred_folder (str) – The path of the prediction images.
categories (str) – The categories of the dataset.
backend_args (object) – The file client of the dataset. If None, the backend will be set to local.
nproc (int) – Number of processes for panoptic quality computing. Defaults to 32. When nproc exceeds the number of cpu cores, the number of cpu cores is used.
- mmdet.evaluation.functional.pq_compute_single_core(proc_id, annotation_set, gt_folder, pred_folder, categories, backend_args=None, print_log=False)[source]¶
The single core function to evaluate the metric of Panoptic Segmentation.
Same as the function with the same name in panopticapi. Only the function to load the images is changed to use the file client.
- Parameters
proc_id (int) – The id of the mini process.
gt_folder (str) – The path of the ground truth images.
pred_folder (str) – The path of the prediction images.
categories (str) – The categories of the dataset.
backend_args (object) – The Backend of the dataset. If None, the backend will be set to local.
print_log (bool) – Whether to print the log. Defaults to False.
- mmdet.evaluation.functional.print_map_summary(mean_ap, results, dataset=None, scale_ranges=None, logger=None)[source]¶
Print mAP and results of each class.
A table will be printed to show the gts/dets/recall/AP of each class and the mAP.
- Parameters
mean_ap (float) – Calculated from eval_map().
results (list[dict]) – Calculated from eval_map().
dataset (list[str] | str | None) – Dataset name or dataset classes.
scale_ranges (list[tuple] | None) – Range of scales to be evaluated.
logger (logging.Logger | str | None) – The way to print the mAP summary. See mmengine.logging.print_log() for details. Defaults to None.
- mmdet.evaluation.functional.print_recall_summary(recalls, proposal_nums, iou_thrs, row_idxs=None, col_idxs=None, logger=None)[source]¶
Print recalls in a table.
- Parameters
recalls (ndarray) – calculated from bbox_recalls
proposal_nums (ndarray or list) – top N proposals
iou_thrs (ndarray or list) – iou thresholds
row_idxs (ndarray) – which rows(proposal nums) to print
col_idxs (ndarray) – which cols(iou thresholds) to print
logger (logging.Logger | str | None) – The way to print the recall summary. See mmengine.logging.print_log() for details. Default: None.
metrics¶
- class mmdet.evaluation.metrics.BaseVideoMetric(collect_device: str = 'cpu', prefix: Optional[str] = None, collect_dir: Optional[str] = None)[source]¶
Base class for a metric in video task.
The metric first processes each batch of data_samples and predictions, and appends the processed results to the results list. Then it collects all results together from all ranks if distributed training is used. Finally, it computes the metrics of the entire dataset.
A subclass of class:BaseVideoMetric should assign a meaningful value to the class attribute default_prefix. See the argument prefix for details.
- evaluate(size: int = 1) dict [source]¶
Evaluate the model performance of the whole dataset after processing all batches.
- Parameters
size (int) – Length of the entire validation dataset.
- Returns
Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions.
The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.COCOCaptionMetric(ann_file: str, collect_device: str = 'cpu', prefix: Optional[str] = None)[source]¶
Coco Caption evaluation wrapper.
Save the generated captions and transform into coco format. Calling COCO API for caption metrics.
- Parameters
ann_file (str) – the path for the COCO format caption ground truth json file, load for evaluations.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Should be modified according to the retrieval_type for unambiguous results. Defaults to TR.
- compute_metrics(results: List)[source]¶
Compute the metrics from processed results.
- Parameters
results (dict) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
Dict
- process(data_batch, data_samples)[source]¶
Process one batch of data samples.
The processed results should be stored in
self.results
, which will be used to computed the metrics when all batches have been processed.- Parameters
data_batch – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of outputs from the model.
- class mmdet.evaluation.metrics.CULaneMetric(collect_device: str = 'cpu', prefix: Optional[str] = None, collect_dir: Optional[str] = None, iou_thresholds: Optional[Sequence[float]] = (0.5,))[source]¶
- compute_metrics(results) dict [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: Any, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (Any) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of outputs from the model.
- class mmdet.evaluation.metrics.CityScapesMetric(outfile_prefix: str, seg_prefix: Optional[str] = None, format_only: bool = False, collect_device: str = 'cpu', prefix: Optional[str] = None, dump_matches: bool = False, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None)[source]¶
CityScapes metric for instance segmentation.
- Parameters
outfile_prefix (str) – The prefix of txt and png files. The txt and png file will be save in a directory whose path is “outfile_prefix.results/”.
seg_prefix (str, optional) – Path to the directory which contains the cityscapes instance segmentation masks. It’s necessary when training and validation. It could be None when infer on test dataset. Defaults to None.
format_only (bool) – Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to False.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.
dump_matches (bool) – Whether dump matches.json file during evaluating. Defaults to False.
file_client_args (dict, optional) – Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
- The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
- Return type
Dict[str, float]
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.CocoMetric(ann_file: Optional[str] = None, metric: Union[str, List[str]] = 'bbox', classwise: bool = False, proposal_nums: Sequence[int] = (100, 300, 1000), iou_thrs: Optional[Union[float, Sequence[float]]] = None, metric_items: Optional[Sequence[str]] = None, format_only: bool = False, outfile_prefix: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, collect_device: str = 'cpu', prefix: Optional[str] = None, sort_categories: bool = False, use_mp_eval: bool = False)[source]¶
COCO evaluation metric.
Evaluate AR, AP, and mAP for detection tasks including proposal/box detection and instance segmentation. Please refer to https://cocodataset.org/#detection-eval for more details.
- Parameters
ann_file (str, optional) – Path to the coco format annotation file. If not specified, ground truth annotations from the dataset will be converted to coco format. Defaults to None.
metric (str | List[str]) – Metrics to be evaluated. Valid metrics include ‘bbox’, ‘segm’, ‘proposal’, and ‘proposal_fast’. Defaults to ‘bbox’.
classwise (bool) – Whether to evaluate the metric class-wise. Defaults to False.
proposal_nums (Sequence[int]) – Numbers of proposals to be evaluated. Defaults to (100, 300, 1000).
iou_thrs (float | List[float], optional) – IoU threshold to compute AP and AR. If not specified, IoUs from 0.5 to 0.95 will be used. Defaults to None.
metric_items (List[str], optional) – Metric result names to be recorded in the evaluation result. Defaults to None.
format_only (bool) – Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to False.
outfile_prefix (str, optional) – The prefix of json files. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If not specified, a temp file will be created. Defaults to None.
file_client_args (dict, optional) – Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.
sort_categories (bool) – Whether sort categories in annotations. Only used for Objects365V1Dataset. Defaults to False.
use_mp_eval (bool) – Whether to use mul-processing evaluation
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
Dict[str, float]
- fast_eval_recall(results: List[dict], proposal_nums: Sequence[int], iou_thrs: Sequence[float], logger: Optional[MMLogger] = None) ndarray [source]¶
Evaluate proposal recall with COCO’s fast_eval_recall.
- Parameters
results (List[dict]) – Results of the dataset.
proposal_nums (Sequence[int]) – Proposal numbers used for evaluation.
iou_thrs (Sequence[float]) – IoU thresholds used for evaluation.
logger (MMLogger, optional) – Logger used for logging the recall summary.
- Returns
Averaged recall results.
- Return type
np.ndarray
- gt_to_coco_json(gt_dicts: Sequence[dict], outfile_prefix: str) str [source]¶
Convert ground truth to coco format json file.
- Parameters
gt_dicts (Sequence[dict]) – Ground truth of the dataset.
outfile_prefix (str) – The filename prefix of the json files. If the prefix is “somepath/xxx”, the json file will be named “somepath/xxx.gt.json”.
- Returns
The filename of the json file.
- Return type
str
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- results2json(results: Sequence[dict], outfile_prefix: str) dict [source]¶
Dump the detection results to a COCO style json file.
There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files.
- Parameters
results (Sequence[dict]) – Testing results of the dataset.
outfile_prefix (str) – The filename prefix of the json files. If the prefix is “somepath/xxx”, the json files will be named “somepath/xxx.bbox.json”, “somepath/xxx.segm.json”, “somepath/xxx.proposal.json”.
- Returns
Possible keys are “bbox”, “segm”, “proposal”, and values are corresponding filenames.
- Return type
dict
- class mmdet.evaluation.metrics.CocoOccludedSeparatedMetric(*args, occluded_ann: str = 'https://www.robots.ox.ac.uk/~vgg/research/tpod/datasets/occluded_coco.pkl', separated_ann: str = 'https://www.robots.ox.ac.uk/~vgg/research/tpod/datasets/separated_coco.pkl', score_thr: float = 0.3, iou_thr: float = 0.75, metric: Union[str, List[str]] = ['bbox', 'segm'], **kwargs)[source]¶
Metric of separated and occluded masks which presented in paper `A Tri- Layer Plugin to Improve Occluded Detection.
<https://arxiv.org/abs/2210.10046>`_.
Separated COCO and Occluded COCO are automatically generated subsets of COCO val dataset, collecting separated objects and partially occluded objects for a large variety of categories. In this way, we define occlusion into two major categories: separated and partially occluded.
Separation: target object segmentation mask is separated into distinct regions by the occluder.
Partial Occlusion: target object is partially occluded but the segmentation mask is connected.
These two new scalable real-image datasets are to benchmark a model’s capability to detect occluded objects of 80 common categories.
Please cite the paper if you use this dataset:
- @article{zhan2022triocc,
title={A Tri-Layer Plugin to Improve Occluded Detection}, author={Zhan, Guanqi and Xie, Weidi and Zisserman, Andrew}, journal={British Machine Vision Conference}, year={2022}
}
- Parameters
occluded_ann (str) – Path to the occluded coco annotation file.
separated_ann (str) – Path to the separated coco annotation file.
score_thr (float) – Score threshold of the detection masks. Defaults to 0.3.
iou_thr (float) – IoU threshold for the recall calculation. Defaults to 0.75.
metric (str | List[str]) – Metrics to be evaluated. Valid metrics include ‘bbox’, ‘segm’, ‘proposal’, and ‘proposal_fast’. Defaults to ‘bbox’.
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
Dict[str, float]
- compute_recall(result_dict: dict, gt_ann: list, is_occ: bool = True) tuple [source]¶
Compute the recall of occluded or separated masks.
- Parameters
result_dict (dict) – Processed mask results.
gt_ann (list) – Occluded or separated coco annotations.
is_occ (bool) – Whether the annotation is occluded mask. Defaults to True.
- Returns
number of correct masks and the recall.
- Return type
tuple
- class mmdet.evaluation.metrics.CocoPanopticMetric(ann_file: Optional[str] = None, seg_prefix: Optional[str] = None, classwise: bool = False, format_only: bool = False, outfile_prefix: Optional[str] = None, nproc: int = 32, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, collect_device: str = 'cpu', prefix: Optional[str] = None)[source]¶
COCO panoptic segmentation evaluation metric.
Evaluate PQ, SQ RQ for panoptic segmentation tasks. Please refer to https://cocodataset.org/#panoptic-eval for more details.
- Parameters
ann_file (str, optional) – Path to the coco format annotation file. If not specified, ground truth annotations from the dataset will be converted to coco format. Defaults to None.
seg_prefix (str, optional) – Path to the directory which contains the coco panoptic segmentation mask. It should be specified when evaluate. Defaults to None.
classwise (bool) – Whether to evaluate the metric class-wise. Defaults to False.
outfile_prefix (str, optional) – The prefix of json files. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If not specified, a temp file will be created. It should be specified when format_only is True. Defaults to None.
format_only (bool) – Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to False.
nproc (int) – Number of processes for panoptic quality computing. Defaults to 32. When
nproc
exceeds the number of cpu cores, the number of cpu cores is used.file_client_args (dict, optional) – Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) –
The processed results of each batch. There are two cases:
When
outfile_prefix
is not provided, the elements in results are pq_stats which can be summed directly to get PQ.When
outfile_prefix
is provided, the elements in results are tuples like (gt, pred).
- Returns
- The computed metrics. The keys are the names of
the metrics, and the values are corresponding results.
- Return type
Dict[str, float]
- gt_to_coco_json(gt_dicts: Sequence[dict], outfile_prefix: str) Tuple[str, str] [source]¶
Convert ground truth to coco panoptic segmentation format json file.
- Parameters
gt_dicts (Sequence[dict]) – Ground truth of the dataset.
outfile_prefix (str) – The filename prefix of the json file. If the prefix is “somepath/xxx”, the json file will be named “somepath/xxx.gt.json”.
- Returns
The filename of the json file and the name of the directory which contains panoptic segmentation masks.
- Return type
Tuple[str, str]
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- result2json(results: Sequence[dict], outfile_prefix: str) Tuple[str, str] [source]¶
Dump the panoptic results to a COCO style json file and a directory.
- Parameters
results (Sequence[dict]) – Testing results of the dataset.
outfile_prefix (str) – The filename prefix of the json files and the directory.
- Returns
- The json file and the directory which contains panoptic segmentation masks. The filename of the json is
”somepath/xxx.panoptic.json” and name of the directory is “somepath/xxx.panoptic”.
- Return type
Tuple[str, str]
- class mmdet.evaluation.metrics.CocoVideoMetric(ann_file: Optional[str] = None, metric: Union[str, List[str]] = 'bbox', classwise: bool = False, proposal_nums: Sequence[int] = (100, 300, 1000), iou_thrs: Optional[Union[float, Sequence[float]]] = None, metric_items: Optional[Sequence[str]] = None, format_only: bool = False, outfile_prefix: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, collect_device: str = 'cpu', prefix: Optional[str] = None, sort_categories: bool = False, use_mp_eval: bool = False)[source]¶
COCO evaluation metric.
Evaluate AR, AP, and mAP for detection tasks including proposal/box detection and instance segmentation. Please refer to https://cocodataset.org/#detection-eval for more details.
- evaluate(size: int = 1) dict [source]¶
Evaluate the model performance of the whole dataset after processing all batches.
- Parameters
size (int) – Length of the entire validation dataset.
- Returns
Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions.
The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.CrowdHumanMetric(ann_file: str, metric: Union[str, List[str]] = ['AP', 'MR', 'JI'], format_only: bool = False, outfile_prefix: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, collect_device: str = 'cpu', prefix: Optional[str] = None, eval_mode: int = 0, iou_thres: float = 0.5, compare_matching_method: Optional[str] = None, mr_ref: str = 'CALTECH_-2', num_ji_process: int = 10)[source]¶
CrowdHuman evaluation metric.
Evaluate Average Precision (AP), Miss Rate (MR) and Jaccard Index (JI) for detection tasks.
- Parameters
ann_file (str) – Path to the annotation file.
metric (str | List[str]) – Metrics to be evaluated. Valid metrics include ‘AP’, ‘MR’ and ‘JI’. Defaults to ‘AP’.
format_only (bool) – Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to False.
outfile_prefix (str, optional) – The prefix of json files. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If not specified, a temp file will be created. Defaults to None.
file_client_args (dict, optional) – Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.
eval_mode (int) – Select the mode of evaluate. Valid mode include 0(just body box), 1(just head box) and 2(both of them). Defaults to 0.
iou_thres (float) – IoU threshold. Defaults to 0.5.
compare_matching_method (str, optional) – Matching method to compare the detection results with the ground_truth when compute ‘AP’ and ‘MR’.Valid method include VOC and None(CALTECH). Default to None.
mr_ref (str) – Different parameter selection to calculate MR. Valid ref include CALTECH_-2 and CALTECH_-4. Defaults to CALTECH_-2.
num_ji_process (int) – The number of processes to evaluation JI. Defaults to 10.
- compare(samples)[source]¶
Match the detection results with the ground_truth.
- Parameters
samples (dict[Image]) – The detection result packaged by Image.
- Returns
Matching result. a list of tuples (dtbox, label, imgID) in the descending sort of dtbox.score.
- Return type
score_list(list[tuple[ndarray, int, str]])
- compute_ji_matching(dt_boxes, gt_boxes)[source]¶
Match the annotation box for each detection box.
- Parameters
dt_boxes (ndarray) – Detection boxes.
gt_boxes (ndarray) – Ground_truth boxes.
- Returns
Match result.
- Return type
matches_(list[tuple[int, int]])
- compute_ji_with_ignore(result_queue, dt_result, score_thr)[source]¶
Compute JI with ignore.
- Parameters
result_queue (Queue) – The Queue for save compute result when multi_process.
dt_result (dict[Image]) – Detection result packaged by Image.
score_thr (float) – The threshold of detection score.
- Returns
compute result.
- Return type
dict
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
eval_results(Dict[str, float])
- static eval_ap(score_list, gt_num, img_num)[source]¶
Evaluate by average precision.
- Parameters
score_list (list[tuple[ndarray, int, str]]) – Matching result. a list of tuples (dtbox, label, imgID) in the descending sort of dtbox.score.
gt_num (int) – The number of gt boxes in the entire dataset.
img_num (int) – The number of images in the entire dataset.
- Returns
result of average precision.
- Return type
ap(float)
- eval_ji(samples)[source]¶
Evaluate by JI using multi_process.
- Parameters
samples (Dict[str, Image]) – The detection result packaged by Image.
- Returns
result of jaccard index.
- Return type
ji(float)
- eval_mr(score_list, gt_num, img_num)[source]¶
Evaluate by Caltech-style log-average miss rate.
- Parameters
score_list (list[tuple[ndarray, int, str]]) – Matching result. a list of tuples (dtbox, label, imgID) in the descending sort of dtbox.score.
gt_num (int) – The number of gt boxes in the entire dataset.
img_num (int) – The number of image in the entire dataset.
- Returns
result of miss rate.
- Return type
mr(float)
- load_eval_samples(result_file)[source]¶
Load data from annotations file and detection results.
- Parameters
result_file (str) – The file path of the saved detection results.
- Returns
The detection result packaged by Image
- Return type
Dict[Image]
- process(data_batch: Sequence[dict], data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.DODCocoMetric(ann_file: Optional[str] = None, collect_device: str = 'cpu', outfile_prefix: Optional[str] = None, backend_args: Optional[dict] = None, prefix: Optional[str] = None)[source]¶
- compute_metrics(results: list) dict [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (Any) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of outputs from the model.
- results2json(results: Sequence[dict]) list [source]¶
Dump the detection results to a COCO style json file.
There are 3 types of results: proposals, bbox predictions, mask predictions, and they have different data types. This method will automatically recognize the type, and dump them to json files.
- Parameters
results (Sequence[dict]) – Testing results of the dataset.
- Returns
Possible keys are “bbox”, “segm”, “proposal”, and values are corresponding filenames.
- Return type
dict
- class mmdet.evaluation.metrics.DumpDetResults(out_file_path: str, collect_device: str = 'cpu', collect_dir: Optional[str] = None)[source]¶
Dump model predictions to a pickle file for offline evaluation.
Different from DumpResults in MMEngine, it compresses instance segmentation masks into RLE format.
- Parameters
out_file_path (str) – Path of the dumped file. Must end with ‘.pkl’ or ‘.pickle’.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
- class mmdet.evaluation.metrics.DumpODVGResults(outfile_path, img_prefix: str, score_thr: float = 0.1, collect_device: str = 'cpu', nms_thr: float = 0.5, prefix: Optional[str] = None)[source]¶
- compute_metrics(results: list) dict [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: Any, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (Any) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of outputs from the model.
- class mmdet.evaluation.metrics.DumpProposals(output_dir: str = '', proposals_file: str = 'proposals.pkl', num_max_proposals: Optional[int] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, collect_device: str = 'cpu', prefix: Optional[str] = None)[source]¶
Dump proposals pseudo metric.
- Parameters
output_dir (str) – The root directory for
proposals_file
. Defaults to ‘’.proposals_file (str) – Proposals file path. Defaults to ‘proposals.pkl’.
num_max_proposals (int, optional) – Maximum number of proposals to dump. If not specified, all proposals will be dumped.
file_client_args (dict, optional) – Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.
- compute_metrics(results: list) dict [source]¶
Dump the processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
An empty dict.
- Return type
dict
- process(data_batch: Sequence[dict], data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.FasterCocoMetric(ann_file: Optional[str] = None, metric: Union[str, List[str]] = 'bbox', classwise: bool = False, proposal_nums: Sequence[int] = (100, 300, 1000), iou_thrs: Optional[Union[float, Sequence[float]]] = None, metric_items: Optional[Sequence[str]] = None, format_only: bool = False, outfile_prefix: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, collect_device: str = 'cpu', prefix: Optional[str] = None, sort_categories: bool = False, use_mp_eval: bool = False)[source]¶
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
Dict[str, float]
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.Flickr30kMetric(topk: Sequence[int] = (1, 5, 10, -1), iou_thrs: float = 0.5, merge_boxes: bool = False, collect_device: str = 'cpu', prefix: Optional[str] = None)[source]¶
Phrase Grounding Metric.
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
Dict[str, float]
- merge_boxes(boxes: List[List[int]]) List[List[int]] [source]¶
Return the boxes corresponding to the smallest enclosing box containing all the provided boxes The boxes are expected in [x1, y1, x2, y2] format.
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions.
The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed. :param data_batch: A batch of data from the dataloader. :type data_batch: dict :param data_samples: A batch of data samples thatcontain annotations and predictions.
- class mmdet.evaluation.metrics.LVISMetric(ann_file: Optional[str] = None, metric: Union[str, List[str]] = 'bbox', classwise: bool = False, proposal_nums: Sequence[int] = (100, 300, 1000), iou_thrs: Optional[Union[float, Sequence[float]]] = None, metric_items: Optional[Sequence[str]] = None, format_only: bool = False, outfile_prefix: Optional[str] = None, collect_device: str = 'cpu', prefix: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None)[source]¶
LVIS evaluation metric.
- Parameters
ann_file (str, optional) – Path to the coco format annotation file. If not specified, ground truth annotations from the dataset will be converted to coco format. Defaults to None.
metric (str | List[str]) – Metrics to be evaluated. Valid metrics include ‘bbox’, ‘segm’, ‘proposal’, and ‘proposal_fast’. Defaults to ‘bbox’.
classwise (bool) – Whether to evaluate the metric class-wise. Defaults to False.
proposal_nums (Sequence[int]) – Numbers of proposals to be evaluated. Defaults to (100, 300, 1000).
iou_thrs (float | List[float], optional) – IoU threshold to compute AP and AR. If not specified, IoUs from 0.5 to 0.95 will be used. Defaults to None.
metric_items (List[str], optional) – Metric result names to be recorded in the evaluation result. Defaults to None.
format_only (bool) – Format the output results without perform evaluation. It is useful when you want to format the result to a specific format and submit it to the test server. Defaults to False.
outfile_prefix (str, optional) – The prefix of json files. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If not specified, a temp file will be created. Defaults to None.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.
file_client_args (dict, optional) – Arguments to instantiate the corresponding backend in mmdet <= 3.0.0rc6. Defaults to None.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
Dict[str, float]
- fast_eval_recall(results: List[dict], proposal_nums: Sequence[int], iou_thrs: Sequence[float], logger: Optional[MMLogger] = None) ndarray [source]¶
Evaluate proposal recall with LVIS’s fast_eval_recall.
- Parameters
results (List[dict]) – Results of the dataset.
proposal_nums (Sequence[int]) – Proposal numbers used for evaluation.
iou_thrs (Sequence[float]) – IoU thresholds used for evaluation.
logger (MMLogger, optional) – Logger used for logging the recall summary.
- Returns
Averaged recall results.
- Return type
np.ndarray
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.MOTChallengeMetric(metric: Union[str, List[str]] = ['HOTA', 'CLEAR', 'Identity'], outfile_prefix: Optional[str] = None, track_iou_thr: float = 0.5, benchmark: str = 'MOT17', format_only: bool = False, use_postprocess: bool = False, postprocess_tracklet_cfg: Optional[List[dict]] = [], collect_device: str = 'cpu', prefix: Optional[str] = None)[source]¶
Evaluation metrics for MOT Challenge.
- Parameters
metric (str | list[str]) – Metrics to be evaluated. Options are ‘HOTA’, ‘CLEAR’, ‘Identity’. Defaults to [‘HOTA’, ‘CLEAR’, ‘Identity’].
outfile_prefix (str, optional) – Path to save the formatted results. Defaults to None.
track_iou_thr (float) – IoU threshold for tracking evaluation. Defaults to 0.5.
benchmark (str) – Benchmark to be evaluated. Defaults to ‘MOT17’.
format_only (bool) – If True, only formatting the results to the official format and not performing evaluation. Defaults to False.
postprocess_tracklet_cfg (List[dict], optional) –
configs for tracklets postprocessing methods. InterpolateTracklets is supported. Defaults to [] - InterpolateTracklets:
- min_num_frames (int, optional): The minimum length of a
track that will be interpolated. Defaults to 5.
- max_num_frames (int, optional): The maximum disconnected
length in a track. Defaults to 20.
- use_gsi (bool, optional): Whether to use the GSI (Gaussian-
smoothed interpolation) method. Defaults to False.
- smooth_tau (int, optional): smoothing parameter in GSI.
Defaults to 10.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None
Returns:
- compute_metrics(results: Optional[list] = None) dict [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch. Defaults to None.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- evaluate(size: int = 1) dict [source]¶
Evaluate the model performance of the whole dataset after processing all batches.
- Parameters
size (int) – Length of the entire validation dataset. Defaults to None.
- Returns
Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- class mmdet.evaluation.metrics.OVCocoMetric(ann_file: Optional[str] = None, metric: Union[str, List[str]] = 'bbox', classwise: bool = False, proposal_nums: Sequence[int] = (100, 300, 1000), iou_thrs: Optional[Union[float, Sequence[float]]] = None, metric_items: Optional[Sequence[str]] = None, format_only: bool = False, outfile_prefix: Optional[str] = None, file_client_args: Optional[dict] = None, backend_args: Optional[dict] = None, collect_device: str = 'cpu', prefix: Optional[str] = None, sort_categories: bool = False, use_mp_eval: bool = False)[source]¶
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
Dict[str, float]
- class mmdet.evaluation.metrics.OpenImagesMetric(iou_thrs: Union[float, List[float]] = 0.5, ioa_thrs: Union[float, List[float]] = 0.5, scale_ranges: Optional[List[tuple]] = None, use_group_of: bool = True, get_supercategory: bool = True, filter_labels: bool = True, collect_device: str = 'cpu', prefix: Optional[str] = None)[source]¶
OpenImages evaluation metric.
Evaluate detection mAP for OpenImages. Please refer to https://storage.googleapis.com/openimages/web/evaluation.html for more details.
- Parameters
iou_thrs (float or List[float]) – IoU threshold. Defaults to 0.5.
ioa_thrs (float or List[float]) – IoA threshold. Defaults to 0.5.
scale_ranges (List[tuple], optional) – Scale ranges for evaluating mAP. If not specified, all bounding boxes would be included in evaluation. Defaults to None
use_group_of (bool) – Whether consider group of groud truth bboxes during evaluating. Defaults to True.
get_supercategory (bool) – Whether to get parent class of the current class. Default: True.
filter_labels (bool) – Whether filter unannotated classes. Default: True.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.
- compute_metrics(results: list) dict [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.ReIDMetrics(metric: Union[str, Sequence[str]] = 'mAP', metric_options: Optional[dict] = None, collect_device: str = 'cpu', prefix: Optional[str] = None)[source]¶
MAP and CMC evaluation metrics for the ReID task.
- Parameters
metric (str | list[str]) – Metrics to be evaluated. Default value is mAP.
metric_options – (dict, optional): Options for calculating metrics. Allowed keys are ‘rank_list’ and ‘max_rank’. Defaults to None.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None
- compute_metrics(results: list) dict [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions.
The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.RefExpMetric(ann_file: Optional[str] = None, metric: str = 'bbox', topk=(1, 5, 10), iou_thrs: float = 0.5, **kwargs)[source]¶
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (Any) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of outputs from the model.
- class mmdet.evaluation.metrics.RefSegMetric(metric: Sequence = ('cIoU', 'mIoU'), **kwargs)[source]¶
Referring Expression Segmentation Metric.
- compute_metrics(results: list) dict [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data and data_samples.
The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of outputs from the model.
- class mmdet.evaluation.metrics.SemSegMetric(iou_metrics: Sequence[str] = ['mIoU'], beta: int = 1, collect_device: str = 'cpu', output_dir: Optional[str] = None, format_only: bool = False, backend_args: Optional[dict] = None, prefix: Optional[str] = None)[source]¶
MIoU evaluation metric.
- Parameters
iou_metrics (list[str] | str) – Metrics to be calculated, the options includes ‘mIoU’, ‘mDice’ and ‘mFscore’.
beta (int) – Determines the weight of recall in the combined score. Default: 1.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
output_dir (str) – The directory for output prediction. Defaults to None.
format_only (bool) – Only format result for results commit without perform evaluation. It is useful when you want to save the result to a specific format and submit it to the test server. Defaults to False.
backend_args (dict, optional) – Arguments to instantiate the corresponding backend. Defaults to None.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
- The computed metrics. The keys are the names of
the metrics, and the values are corresponding results. The key mainly includes aAcc, mIoU, mAcc, mDice, mFscore, mPrecision, mRecall.
- Return type
Dict[str, float]
- get_return_metrics(results: list) dict [source]¶
Calculate evaluation metrics.
- Parameters
results (list) – The processed results of each batch.
- Returns
- per category evaluation metrics,
shape (num_classes, ).
- Return type
Dict[str, np.ndarray]
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data and data_samples.
The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of outputs from the model.
- class mmdet.evaluation.metrics.VOCMetric(iou_thrs: Union[float, List[float]] = 0.5, scale_ranges: Optional[List[tuple]] = None, metric: Union[str, List[str]] = 'mAP', proposal_nums: Sequence[int] = (100, 300, 1000), eval_mode: str = '11points', collect_device: str = 'cpu', prefix: Optional[str] = None)[source]¶
Pascal VOC evaluation metric.
- Parameters
iou_thrs (float or List[float]) – IoU threshold. Defaults to 0.5.
scale_ranges (List[tuple], optional) – Scale ranges for evaluating mAP. If not specified, all bounding boxes would be included in evaluation. Defaults to None.
metric (str | list[str]) –
Metrics to be evaluated. Options are ‘mAP’, ‘recall’. If is list, the first setting in the list will
be used to evaluate metric.
proposal_nums (Sequence[int]) – Proposal number used for evaluating recalls, such as recall@100, recall@1000. Default: (100, 300, 1000).
eval_mode (str) – ‘area’ or ‘11points’, ‘area’ means calculating the area under precision-recall curve, ‘11points’ means calculating the average precision of recalls at [0, 0.1, …, 1]. The PASCAL VOC2007 defaults to use ‘11points’, while PASCAL VOC2012 defaults to use ‘area’.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Defaults to None.
- compute_metrics(results: list) dict [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (dict) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of data samples that contain annotations and predictions.
- class mmdet.evaluation.metrics.YouTubeVISMetric(metric: Union[str, List[str]] = 'youtube_vis_ap', metric_items: Optional[Sequence[str]] = None, outfile_prefix: Optional[str] = None, collect_device: str = 'cpu', prefix: Optional[str] = None, format_only: bool = False)[source]¶
MAP evaluation metrics for the VIS task.
- Parameters
metric (str | list[str]) – Metrics to be evaluated. Default value is youtube_vis_ap.
metric_items (List[str], optional) – Metric result names to be recorded in the evaluation result. Defaults to None.
outfile_prefix (str | None) – The prefix of json files. It includes the file path and the prefix of filename, e.g., “a/b/prefix”. If not specified, a temp file will be created. Defaults to None.
collect_device (str) – Device name used for collecting results from different ranks during distributed training. Must be ‘cpu’ or ‘gpu’. Defaults to ‘cpu’.
prefix (str, optional) – The prefix that will be added in the metric names to disambiguate homonyms metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None
format_only (bool) – If True, only formatting the results to the official format and not performing evaluation. Defaults to False.
- compute_metrics(results: List) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (List) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
Dict[str, float]
- evaluate(size: int) dict [source]¶
Evaluate the model performance of the whole dataset after processing all batches.
- Parameters
size (int) – Length of the entire validation dataset.
- Returns
Evaluation metrics dict on the val dataset. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- class mmdet.evaluation.metrics.gRefCOCOMetric(ann_file: Optional[str] = None, metric: str = 'bbox', iou_thrs: float = 0.5, thresh_score: float = 0.7, thresh_f1: float = 1.0, **kwargs)[source]¶
- compute_metrics(results: list) Dict[str, float] [source]¶
Compute the metrics from processed results.
- Parameters
results (list) – The processed results of each batch.
- Returns
The computed metrics. The keys are the names of the metrics, and the values are corresponding results.
- Return type
dict
- process(data_batch: dict, data_samples: Sequence[dict]) None [source]¶
Process one batch of data samples and predictions. The processed results should be stored in
self.results
, which will be used to compute the metrics when all batches have been processed.- Parameters
data_batch (Any) – A batch of data from the dataloader.
data_samples (Sequence[dict]) – A batch of outputs from the model.
mmdet.models¶
backbones¶
- class mmdet.models.backbones.CSPDarknet(arch='P5', deepen_factor=1.0, widen_factor=1.0, out_indices=(2, 3, 4), frozen_stages=-1, use_depthwise=False, arch_ovewrite=None, spp_kernal_sizes=(5, 9, 13), conv_cfg=None, norm_cfg={'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg={'type': 'Swish'}, norm_eval=False, init_cfg={'a': 2.23606797749979, 'distribution': 'uniform', 'layer': 'Conv2d', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu', 'type': 'Kaiming'})[source]¶
CSP-Darknet backbone used in YOLOv5 and YOLOX.
- Parameters
arch (str) – Architecture of CSP-Darknet, from {P5, P6}. Default: P5.
deepen_factor (float) – Depth multiplier, multiply number of blocks in CSP layer by this amount. Default: 1.0.
widen_factor (float) – Width multiplier, multiply number of channels in each layer by this amount. Default: 1.0.
out_indices (Sequence[int]) – Output from which stages. Default: (2, 3, 4).
frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Default: -1.
use_depthwise (bool) – Whether to use depthwise separable convolution. Default: False.
arch_ovewrite (list) – Overwrite default arch settings. Default: None.
spp_kernal_sizes – (tuple[int]): Sequential of kernel sizes of SPP layers. Default: (5, 9, 13).
conv_cfg (dict) – Config dict for convolution layer. Default: None.
norm_cfg (dict) – Dictionary to construct and config norm layer. Default: dict(type=’BN’, requires_grad=True).
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’LeakyReLU’, negative_slope=0.1).
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None.
Example
>>> from mmdet.models import CSPDarknet >>> import torch >>> self = CSPDarknet(depth=53) >>> self.eval() >>> inputs = torch.rand(1, 3, 416, 416) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) ... (1, 256, 52, 52) (1, 512, 26, 26) (1, 1024, 13, 13)
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- train(mode=True)[source]¶
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
self
- Return type
Module
- class mmdet.models.backbones.CSPNeXt(arch: str = 'P5', deepen_factor: float = 1.0, widen_factor: float = 1.0, out_indices: Sequence[int] = (2, 3, 4), frozen_stages: int = -1, use_depthwise: bool = False, expand_ratio: float = 0.5, arch_ovewrite: Optional[dict] = None, spp_kernel_sizes: Sequence[int] = (5, 9, 13), channel_attention: bool = True, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg: Union[ConfigDict, dict] = {'type': 'SiLU'}, norm_eval: bool = False, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = {'a': 2.23606797749979, 'distribution': 'uniform', 'layer': 'Conv2d', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu', 'type': 'Kaiming'})[source]¶
CSPNeXt backbone used in RTMDet.
- Parameters
arch (str) – Architecture of CSPNeXt, from {P5, P6}. Defaults to P5.
expand_ratio (float) – Ratio to adjust the number of channels of the hidden layer. Defaults to 0.5.
deepen_factor (float) – Depth multiplier, multiply number of blocks in CSP layer by this amount. Defaults to 1.0.
widen_factor (float) – Width multiplier, multiply number of channels in each layer by this amount. Defaults to 1.0.
out_indices (Sequence[int]) – Output from which stages. Defaults to (2, 3, 4).
frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Defaults to -1.
use_depthwise (bool) – Whether to use depthwise separable convolution. Defaults to False.
arch_ovewrite (list) – Overwrite default arch settings. Defaults to None.
spp_kernel_sizes – (tuple[int]): Sequential of kernel sizes of SPP layers. Defaults to (5, 9, 13).
channel_attention (bool) – Whether to add channel attention in each stage. Defaults to True.
conv_cfg (
ConfigDict
or dict, optional) – Config dict for convolution layer. Defaults to None.norm_cfg (
ConfigDict
or dict) – Dictionary to construct and config norm layer. Defaults to dict(type=’BN’, requires_grad=True).act_cfg (
ConfigDict
or dict) – Config dict for activation layer. Defaults to dict(type=’SiLU’).norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.
:param init_cfg (
ConfigDict
or dict or list[dict] or: list[ConfigDict
]): Initialization config dict.- forward(x: Tuple[Tensor, ...]) Tuple[Tensor, ...] [source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- train(mode=True) None [source]¶
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
self
- Return type
Module
- class mmdet.models.backbones.Darknet(depth=53, out_indices=(3, 4, 5), frozen_stages=-1, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, act_cfg={'negative_slope': 0.1, 'type': 'LeakyReLU'}, norm_eval=True, pretrained=None, init_cfg=None)[source]¶
Darknet backbone.
- Parameters
depth (int) – Depth of Darknet. Currently only support 53.
out_indices (Sequence[int]) – Output from which stages.
frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Default: -1.
conv_cfg (dict) – Config dict for convolution layer. Default: None.
norm_cfg (dict) – Dictionary to construct and config norm layer. Default: dict(type=’BN’, requires_grad=True)
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’LeakyReLU’, negative_slope=0.1).
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.
pretrained (str, optional) – model pretrained path. Default: None
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
Example
>>> from mmdet.models import Darknet >>> import torch >>> self = Darknet(depth=53) >>> self.eval() >>> inputs = torch.rand(1, 3, 416, 416) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) ... (1, 256, 52, 52) (1, 512, 26, 26) (1, 1024, 13, 13)
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- static make_conv_res_block(in_channels, out_channels, res_repeat, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, act_cfg={'negative_slope': 0.1, 'type': 'LeakyReLU'})[source]¶
In Darknet backbone, ConvLayer is usually followed by ResBlock. This function will make that. The Conv layers always have 3x3 filters with stride=2. The number of the filters in Conv layer is the same as the out channels of the ResBlock.
- Parameters
in_channels (int) – The number of input channels.
out_channels (int) – The number of output channels.
res_repeat (int) – The number of ResBlocks.
conv_cfg (dict) – Config dict for convolution layer. Default: None.
norm_cfg (dict) – Dictionary to construct and config norm layer. Default: dict(type=’BN’, requires_grad=True)
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’LeakyReLU’, negative_slope=0.1).
- train(mode=True)[source]¶
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
self
- Return type
Module
- class mmdet.models.backbones.DetectoRS_ResNeXt(groups=1, base_width=4, **kwargs)[source]¶
ResNeXt backbone for DetectoRS.
- Parameters
groups (int) – The number of groups in ResNeXt.
base_width (int) – The base width of ResNeXt.
- class mmdet.models.backbones.DetectoRS_ResNet(sac=None, stage_with_sac=(False, False, False, False), rfp_inplanes=None, output_img=False, pretrained=None, init_cfg=None, **kwargs)[source]¶
ResNet backbone for DetectoRS.
- Parameters
sac (dict, optional) – Dictionary to construct SAC (Switchable Atrous Convolution). Default: None.
stage_with_sac (list) – Which stage to use sac. Default: (False, False, False, False).
rfp_inplanes (int, optional) – The number of channels from RFP. Default: None. If specified, an additional conv layer will be added for
rfp_feat
. Otherwise, the structure is the same as base class.output_img (bool) – If
True
, the input image will be inserted into the starting position of output. Default: False.
- class mmdet.models.backbones.EfficientNet(arch='b0', drop_path_rate=0.0, out_indices=(6,), frozen_stages=0, conv_cfg={'type': 'Conv2dAdaptivePadding'}, norm_cfg={'eps': 0.001, 'type': 'BN'}, act_cfg={'type': 'Swish'}, norm_eval=False, with_cp=False, init_cfg=[{'type': 'Kaiming', 'layer': 'Conv2d'}, {'type': 'Constant', 'layer': ['_BatchNorm', 'GroupNorm'], 'val': 1}])[source]¶
EfficientNet backbone.
- Parameters
arch (str) – Architecture of efficientnet. Defaults to b0.
out_indices (Sequence[int]) – Output from which stages. Defaults to (6, ).
frozen_stages (int) – Stages to be frozen (all param fixed). Defaults to 0, which means not freezing any parameters.
conv_cfg (dict) – Config dict for convolution layer. Defaults to None, which means using conv2d.
norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type=’BN’).
act_cfg (dict) – Config dict for activation layer. Defaults to dict(type=’Swish’).
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Defaults to False.
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- train(mode=True)[source]¶
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
self
- Return type
Module
- class mmdet.models.backbones.HRNet(extra, in_channels=3, conv_cfg=None, norm_cfg={'type': 'BN'}, norm_eval=True, with_cp=False, zero_init_residual=False, multiscale_output=True, pretrained=None, init_cfg=None)[source]¶
HRNet backbone.
High-Resolution Representations for Labeling Pixels and Regions arXiv:.
- Parameters
extra (dict) –
Detailed configuration for each stage of HRNet. There must be 4 stages, the configuration for each stage must have 5 keys:
num_modules(int): The number of HRModule in this stage.
num_branches(int): The number of branches in the HRModule.
block(str): The type of convolution block.
- num_blocks(tuple): The number of blocks in each branch.
The length must be equal to num_branches.
- num_channels(tuple): The number of channels in each branch.
The length must be equal to num_branches.
in_channels (int) – Number of input image channels. Default: 3.
conv_cfg (dict) – Dictionary to construct and config conv layer.
norm_cfg (dict) – Dictionary to construct and config norm layer.
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: True.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False.
zero_init_residual (bool) – Whether to use zero init for last norm layer in resblocks to let them behave as identity. Default: False.
multiscale_output (bool) – Whether to output multi-level features produced by multiple branches. If False, only the first level feature will be output. Default: True.
pretrained (str, optional) – Model pretrained path. Default: None.
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None.
Example
>>> from mmdet.models import HRNet >>> import torch >>> extra = dict( >>> stage1=dict( >>> num_modules=1, >>> num_branches=1, >>> block='BOTTLENECK', >>> num_blocks=(4, ), >>> num_channels=(64, )), >>> stage2=dict( >>> num_modules=1, >>> num_branches=2, >>> block='BASIC', >>> num_blocks=(4, 4), >>> num_channels=(32, 64)), >>> stage3=dict( >>> num_modules=4, >>> num_branches=3, >>> block='BASIC', >>> num_blocks=(4, 4, 4), >>> num_channels=(32, 64, 128)), >>> stage4=dict( >>> num_modules=3, >>> num_branches=4, >>> block='BASIC', >>> num_blocks=(4, 4, 4, 4), >>> num_channels=(32, 64, 128, 256))) >>> self = HRNet(extra, in_channels=1) >>> self.eval() >>> inputs = torch.rand(1, 1, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 32, 8, 8) (1, 64, 4, 4) (1, 128, 2, 2) (1, 256, 1, 1)
- property norm1¶
the normalization layer named “norm1”.
- Type
nn.Module
- property norm2¶
the normalization layer named “norm2”.
- Type
nn.Module
- class mmdet.models.backbones.HourglassNet(downsample_times: int = 5, num_stacks: int = 2, stage_channels: Sequence = (256, 256, 384, 384, 384, 512), stage_blocks: Sequence = (2, 2, 2, 2, 2, 4), feat_channel: int = 256, norm_cfg: Union[ConfigDict, dict] = {'requires_grad': True, 'type': 'BN'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
HourglassNet backbone.
Stacked Hourglass Networks for Human Pose Estimation. More details can be found in the paper .
- Parameters
downsample_times (int) – Downsample times in a HourglassModule.
num_stacks (int) – Number of HourglassModule modules stacked, 1 for Hourglass-52, 2 for Hourglass-104.
stage_channels (Sequence[int]) – Feature channel of each sub-module in a HourglassModule.
stage_blocks (Sequence[int]) – Number of sub-modules stacked in a HourglassModule.
feat_channel (int) – Feature channel of conv after a HourglassModule.
norm_cfg – Dictionary to construct and config norm layer.
Example
>>> from mmdet.models import HourglassNet >>> import torch >>> self = HourglassNet() >>> self.eval() >>> inputs = torch.rand(1, 3, 511, 511) >>> level_outputs = self.forward(inputs) >>> for level_output in level_outputs: ... print(tuple(level_output.shape)) (1, 256, 128, 128) (1, 256, 128, 128)
- class mmdet.models.backbones.MobileNetV2(widen_factor=1.0, out_indices=(1, 2, 4, 7), frozen_stages=-1, conv_cfg=None, norm_cfg={'type': 'BN'}, act_cfg={'type': 'ReLU6'}, norm_eval=False, with_cp=False, pretrained=None, init_cfg=None)[source]¶
MobileNetV2 backbone.
- Parameters
widen_factor (float) – Width multiplier, multiply number of channels in each layer by this amount. Default: 1.0.
out_indices (Sequence[int], optional) – Output from which stages. Default: (1, 2, 4, 7).
frozen_stages (int) – Stages to be frozen (all param fixed). Default: -1, which means not freezing any parameters.
conv_cfg (dict, optional) – Config dict for convolution layer. Default: None, which means using conv2d.
norm_cfg (dict) – Config dict for normalization layer. Default: dict(type=’BN’).
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’ReLU6’).
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False.
pretrained (str, optional) – model pretrained path. Default: None
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
- make_layer(out_channels, num_blocks, stride, expand_ratio)[source]¶
Stack InvertedResidual blocks to build a layer for MobileNetV2.
- Parameters
out_channels (int) – out_channels of block.
num_blocks (int) – number of blocks.
stride (int) – stride of the first block. Default: 1
expand_ratio (int) – Expand the number of channels of the hidden layer in InvertedResidual by this ratio. Default: 6.
- class mmdet.models.backbones.PyramidVisionTransformer(pretrain_img_size=224, in_channels=3, embed_dims=64, num_stages=4, num_layers=[3, 4, 6, 3], num_heads=[1, 2, 5, 8], patch_sizes=[4, 2, 2, 2], strides=[4, 2, 2, 2], paddings=[0, 0, 0, 0], sr_ratios=[8, 4, 2, 1], out_indices=(0, 1, 2, 3), mlp_ratios=[8, 8, 4, 4], qkv_bias=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, use_abs_pos_embed=True, norm_after_stage=False, use_conv_ffn=False, act_cfg={'type': 'GELU'}, norm_cfg={'eps': 1e-06, 'type': 'LN'}, pretrained=None, convert_weights=True, init_cfg=None)[source]¶
Pyramid Vision Transformer (PVT)
Implementation of Pyramid Vision Transformer: A Versatile Backbone for Dense Prediction without Convolutions.
- Parameters
pretrain_img_size (int | tuple[int]) – The size of input image when pretrain. Defaults: 224.
in_channels (int) – Number of input channels. Default: 3.
embed_dims (int) – Embedding dimension. Default: 64.
num_stags (int) – The num of stages. Default: 4.
num_layers (Sequence[int]) – The layer number of each transformer encode layer. Default: [3, 4, 6, 3].
num_heads (Sequence[int]) – The attention heads of each transformer encode layer. Default: [1, 2, 5, 8].
patch_sizes (Sequence[int]) – The patch_size of each patch embedding. Default: [4, 2, 2, 2].
strides (Sequence[int]) – The stride of each patch embedding. Default: [4, 2, 2, 2].
paddings (Sequence[int]) – The padding of each patch embedding. Default: [0, 0, 0, 0].
sr_ratios (Sequence[int]) – The spatial reduction rate of each transformer encode layer. Default: [8, 4, 2, 1].
out_indices (Sequence[int] | int) – Output from which stages. Default: (0, 1, 2, 3).
mlp_ratios (Sequence[int]) – The ratio of the mlp hidden dim to the embedding dim of each transformer encode layer. Default: [8, 8, 4, 4].
qkv_bias (bool) – Enable bias for qkv if True. Default: True.
drop_rate (float) – Probability of an element to be zeroed. Default 0.0.
attn_drop_rate (float) – The drop out rate for attention layer. Default 0.0.
drop_path_rate (float) – stochastic depth rate. Default 0.1.
use_abs_pos_embed (bool) – If True, add absolute position embedding to the patch embedding. Defaults: True.
use_conv_ffn (bool) – If True, use Convolutional FFN to replace FFN. Default: False.
act_cfg (dict) – The activation config for FFNs. Default: dict(type=’GELU’).
norm_cfg (dict) – Config dict for normalization layer. Default: dict(type=’LN’).
pretrained (str, optional) – model pretrained path. Default: None.
convert_weights (bool) – The flag indicates whether the pre-trained model is from the original repo. We may need to convert some keys to make it compatible. Default: True.
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None.
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.backbones.PyramidVisionTransformerV2(**kwargs)[source]¶
Implementation of PVTv2: Improved Baselines with Pyramid Vision Transformer.
- class mmdet.models.backbones.RegNet(arch, in_channels=3, stem_channels=32, base_channels=32, strides=(2, 2, 2, 2), dilations=(1, 1, 1, 1), out_indices=(0, 1, 2, 3), style='pytorch', deep_stem=False, avg_down=False, frozen_stages=-1, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, norm_eval=True, dcn=None, stage_with_dcn=(False, False, False, False), plugins=None, with_cp=False, zero_init_residual=True, pretrained=None, init_cfg=None)[source]¶
RegNet backbone.
More details can be found in paper .
- Parameters
arch (dict) –
The parameter of RegNets.
w0 (int): initial width
wa (float): slope of width
wm (float): quantization parameter to quantize the width
depth (int): depth of the backbone
group_w (int): width of group
bot_mul (float): bottleneck ratio, i.e. expansion of bottleneck.
strides (Sequence[int]) – Strides of the first block of each stage.
base_channels (int) – Base channels after stem layer.
in_channels (int) – Number of input image channels. Default: 3.
dilations (Sequence[int]) – Dilation of each stage.
out_indices (Sequence[int]) – Output from which stages.
style (str) – pytorch or caffe. If set to “pytorch”, the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer.
frozen_stages (int) – Stages to be frozen (all param fixed). -1 means not freezing any parameters.
norm_cfg (dict) – dictionary to construct and config norm layer.
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed.
zero_init_residual (bool) – whether to use zero init for last norm layer in resblocks to let them behave as identity.
pretrained (str, optional) – model pretrained path. Default: None
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
Example
>>> from mmdet.models import RegNet >>> import torch >>> self = RegNet( arch=dict( w0=88, wa=26.31, wm=2.25, group_w=48, depth=25, bot_mul=1.0)) >>> self.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 96, 8, 8) (1, 192, 4, 4) (1, 432, 2, 2) (1, 1008, 1, 1)
- adjust_width_group(widths, bottleneck_ratio, groups)[source]¶
Adjusts the compatibility of widths and groups.
- Parameters
widths (list[int]) – Width of each stage.
bottleneck_ratio (float) – Bottleneck ratio.
groups (int) – number of groups in each stage
- Returns
The adjusted widths and groups of each stage.
- Return type
tuple(list)
- generate_regnet(initial_width, width_slope, width_parameter, depth, divisor=8)[source]¶
Generates per block width from RegNet parameters.
- Parameters
initial_width ([int]) – Initial width of the backbone
width_slope ([float]) – Slope of the quantized linear function
width_parameter ([int]) – Parameter used to quantize the width.
depth ([int]) – Depth of the backbone.
divisor (int, optional) – The divisor of channels. Defaults to 8.
- Returns
return a list of widths of each stage and the number of stages
- Return type
list, int
- class mmdet.models.backbones.Res2Net(scales=4, base_width=26, style='pytorch', deep_stem=True, avg_down=True, pretrained=None, init_cfg=None, **kwargs)[source]¶
Res2Net backbone.
- Parameters
scales (int) – Scales used in Res2Net. Default: 4
base_width (int) – Basic width of each scale. Default: 26
depth (int) – Depth of res2net, from {50, 101, 152}.
in_channels (int) – Number of input image channels. Default: 3.
num_stages (int) – Res2net stages. Default: 4.
strides (Sequence[int]) – Strides of the first block of each stage.
dilations (Sequence[int]) – Dilation of each stage.
out_indices (Sequence[int]) – Output from which stages.
style (str) – pytorch or caffe. If set to “pytorch”, the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer.
deep_stem (bool) – Replace 7x7 conv in input stem with 3 3x3 conv
avg_down (bool) – Use AvgPool instead of stride conv when downsampling in the bottle2neck.
frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters.
norm_cfg (dict) – Dictionary to construct and config norm layer.
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.
plugins (list[dict]) –
List of plugins for stages, each dict contains:
cfg (dict, required): Cfg dict to build plugin.
position (str, required): Position inside block to insert plugin, options are ‘after_conv1’, ‘after_conv2’, ‘after_conv3’.
stages (tuple[bool], optional): Stages to apply plugin, length should be same as ‘num_stages’.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed.
zero_init_residual (bool) – Whether to use zero init for last norm layer in resblocks to let them behave as identity.
pretrained (str, optional) – model pretrained path. Default: None
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
Example
>>> from mmdet.models import Res2Net >>> import torch >>> self = Res2Net(depth=50, scales=4, base_width=26) >>> self.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 256, 8, 8) (1, 512, 4, 4) (1, 1024, 2, 2) (1, 2048, 1, 1)
- class mmdet.models.backbones.ResNeSt(groups=1, base_width=4, radix=2, reduction_factor=4, avg_down_stride=True, **kwargs)[source]¶
ResNeSt backbone.
- Parameters
groups (int) – Number of groups of Bottleneck. Default: 1
base_width (int) – Base width of Bottleneck. Default: 4
radix (int) – Radix of SplitAttentionConv2d. Default: 2
reduction_factor (int) – Reduction factor of inter_channels in SplitAttentionConv2d. Default: 4.
avg_down_stride (bool) – Whether to use average pool for stride in Bottleneck. Default: True.
kwargs (dict) – Keyword arguments for ResNet.
- class mmdet.models.backbones.ResNeXt(groups=1, base_width=4, **kwargs)[source]¶
ResNeXt backbone.
- Parameters
depth (int) – Depth of resnet, from {18, 34, 50, 101, 152}.
in_channels (int) – Number of input image channels. Default: 3.
num_stages (int) – Resnet stages. Default: 4.
groups (int) – Group of resnext.
base_width (int) – Base width of resnext.
strides (Sequence[int]) – Strides of the first block of each stage.
dilations (Sequence[int]) – Dilation of each stage.
out_indices (Sequence[int]) – Output from which stages.
style (str) – pytorch or caffe. If set to “pytorch”, the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer.
frozen_stages (int) – Stages to be frozen (all param fixed). -1 means not freezing any parameters.
norm_cfg (dict) – dictionary to construct and config norm layer.
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed.
zero_init_residual (bool) – whether to use zero init for last norm layer in resblocks to let them behave as identity.
- class mmdet.models.backbones.ResNet(depth, in_channels=3, stem_channels=None, base_channels=64, num_stages=4, strides=(1, 2, 2, 2), dilations=(1, 1, 1, 1), out_indices=(0, 1, 2, 3), style='pytorch', deep_stem=False, avg_down=False, frozen_stages=-1, conv_cfg=None, norm_cfg={'requires_grad': True, 'type': 'BN'}, norm_eval=True, dcn=None, stage_with_dcn=(False, False, False, False), plugins=None, with_cp=False, zero_init_residual=True, pretrained=None, init_cfg=None)[source]¶
ResNet backbone.
- Parameters
depth (int) – Depth of resnet, from {18, 34, 50, 101, 152}.
stem_channels (int | None) – Number of stem channels. If not specified, it will be the same as base_channels. Default: None.
base_channels (int) – Number of base channels of res layer. Default: 64.
in_channels (int) – Number of input image channels. Default: 3.
num_stages (int) – Resnet stages. Default: 4.
strides (Sequence[int]) – Strides of the first block of each stage.
dilations (Sequence[int]) – Dilation of each stage.
out_indices (Sequence[int]) – Output from which stages.
style (str) – pytorch or caffe. If set to “pytorch”, the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer.
deep_stem (bool) – Replace 7x7 conv in input stem with 3 3x3 conv
avg_down (bool) – Use AvgPool instead of stride conv when downsampling in the bottleneck.
frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters.
norm_cfg (dict) – Dictionary to construct and config norm layer.
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.
plugins (list[dict]) –
List of plugins for stages, each dict contains:
cfg (dict, required): Cfg dict to build plugin.
position (str, required): Position inside block to insert plugin, options are ‘after_conv1’, ‘after_conv2’, ‘after_conv3’.
stages (tuple[bool], optional): Stages to apply plugin, length should be same as ‘num_stages’.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed.
zero_init_residual (bool) – Whether to use zero init for last norm layer in resblocks to let them behave as identity.
pretrained (str, optional) – model pretrained path. Default: None
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
Example
>>> from mmdet.models import ResNet >>> import torch >>> self = ResNet(depth=18) >>> self.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 64, 8, 8) (1, 128, 4, 4) (1, 256, 2, 2) (1, 512, 1, 1)
- make_stage_plugins(plugins, stage_idx)[source]¶
Make plugins for ResNet
stage_idx
th stage.Currently we support to insert
context_block
,empirical_attention_block
,nonlocal_block
into the backbone like ResNet/ResNeXt. They could be inserted after conv1/conv2/conv3 of Bottleneck.An example of plugins format could be:
Examples
>>> plugins=[ ... dict(cfg=dict(type='xxx', arg1='xxx'), ... stages=(False, True, True, True), ... position='after_conv2'), ... dict(cfg=dict(type='yyy'), ... stages=(True, True, True, True), ... position='after_conv3'), ... dict(cfg=dict(type='zzz', postfix='1'), ... stages=(True, True, True, True), ... position='after_conv3'), ... dict(cfg=dict(type='zzz', postfix='2'), ... stages=(True, True, True, True), ... position='after_conv3') ... ] >>> self = ResNet(depth=18) >>> stage_plugins = self.make_stage_plugins(plugins, 0) >>> assert len(stage_plugins) == 3
Suppose
stage_idx=0
, the structure of blocks in the stage would be:conv1-> conv2->conv3->yyy->zzz1->zzz2
Suppose ‘stage_idx=1’, the structure of blocks in the stage would be:
conv1-> conv2->xxx->conv3->yyy->zzz1->zzz2
If stages is missing, the plugin would be applied to all stages.
- Parameters
plugins (list[dict]) – List of plugins cfg to build. The postfix is required if multiple same type plugins are inserted.
stage_idx (int) – Index of stage to build
- Returns
Plugins for current stage
- Return type
list[dict]
- property norm1¶
the normalization layer named “norm1”.
- Type
nn.Module
- class mmdet.models.backbones.ResNetV1d(**kwargs)[source]¶
ResNetV1d variant described in Bag of Tricks.
Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in the input stem with three 3x3 convs. And in the downsampling block, a 2x2 avg_pool with stride 2 is added before conv, whose stride is changed to 1.
- class mmdet.models.backbones.SSDVGG(depth, with_last_pool=False, ceil_mode=True, out_indices=(3, 4), out_feature_indices=(22, 34), pretrained=None, init_cfg=None, input_size=None, l2_norm_scale=None)[source]¶
VGG Backbone network for single-shot-detection.
- Parameters
depth (int) – Depth of vgg, from {11, 13, 16, 19}.
with_last_pool (bool) – Whether to add a pooling layer at the last of the model
ceil_mode (bool) – When True, will use ceil instead of floor to compute the output shape.
out_indices (Sequence[int]) – Output from which stages.
out_feature_indices (Sequence[int]) – Output from which feature map.
pretrained (str, optional) – model pretrained path. Default: None
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
input_size (int, optional) – Deprecated argumment. Width and height of input, from {300, 512}.
l2_norm_scale (float, optional) – Deprecated argumment. L2 normalization layer init scale.
Example
>>> self = SSDVGG(input_size=300, depth=11) >>> self.eval() >>> inputs = torch.rand(1, 3, 300, 300) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 1024, 19, 19) (1, 512, 10, 10) (1, 256, 5, 5) (1, 256, 3, 3) (1, 256, 1, 1)
- class mmdet.models.backbones.SwinTransformer(pretrain_img_size=224, in_channels=3, embed_dims=96, patch_size=4, window_size=7, mlp_ratio=4, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), strides=(4, 2, 2, 2), out_indices=(0, 1, 2, 3), qkv_bias=True, qk_scale=None, patch_norm=True, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.1, use_abs_pos_embed=False, act_cfg={'type': 'GELU'}, norm_cfg={'type': 'LN'}, with_cp=False, pretrained=None, convert_weights=False, frozen_stages=-1, init_cfg=None)[source]¶
Swin Transformer A PyTorch implement of : Swin Transformer: Hierarchical Vision Transformer using Shifted Windows -
Inspiration from https://github.com/microsoft/Swin-Transformer
- Parameters
pretrain_img_size (int | tuple[int]) – The size of input image when pretrain. Defaults: 224.
in_channels (int) – The num of input channels. Defaults: 3.
embed_dims (int) – The feature dimension. Default: 96.
patch_size (int | tuple[int]) – Patch size. Default: 4.
window_size (int) – Window size. Default: 7.
mlp_ratio (int) – Ratio of mlp hidden dim to embedding dim. Default: 4.
depths (tuple[int]) – Depths of each Swin Transformer stage. Default: (2, 2, 6, 2).
num_heads (tuple[int]) – Parallel attention heads of each Swin Transformer stage. Default: (3, 6, 12, 24).
strides (tuple[int]) – The patch merging or patch embedding stride of each Swin Transformer stage. (In swin, we set kernel size equal to stride.) Default: (4, 2, 2, 2).
out_indices (tuple[int]) – Output from which stages. Default: (0, 1, 2, 3).
qkv_bias (bool, optional) – If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional) – Override default qk scale of head_dim ** -0.5 if set. Default: None.
patch_norm (bool) – If add a norm layer for patch embed and patch merging. Default: True.
drop_rate (float) – Dropout rate. Defaults: 0.
attn_drop_rate (float) – Attention dropout rate. Default: 0.
drop_path_rate (float) – Stochastic depth rate. Defaults: 0.1.
use_abs_pos_embed (bool) – If True, add absolute position embedding to the patch embedding. Defaults: False.
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’GELU’).
norm_cfg (dict) – Config dict for normalization layer at output of backone. Defaults: dict(type=’LN’).
with_cp (bool, optional) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False.
pretrained (str, optional) – model pretrained path. Default: None.
convert_weights (bool) – The flag indicates whether the pre-trained model is from the original repo. We may need to convert some keys to make it compatible. Default: False.
frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). Default: -1 (-1 means not freezing any parameters).
init_cfg (dict, optional) – The Config for initialization. Defaults to None.
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.backbones.TridentResNet(depth, num_branch, test_branch_idx, trident_dilations, **kwargs)[source]¶
The stem layer, stage 1 and stage 2 in Trident ResNet are identical to ResNet, while in stage 3, Trident BottleBlock is utilized to replace the normal BottleBlock to yield trident output. Different branch shares the convolution weight but uses different dilations to achieve multi-scale output.
/ stage3(b0) x - stem - stage1 - stage2 - stage3(b1) - output stage3(b2) /
- Parameters
depth (int) – Depth of resnet, from {50, 101, 152}.
num_branch (int) – Number of branches in TridentNet.
test_branch_idx (int) – In inference, all 3 branches will be used if test_branch_idx==-1, otherwise only branch with index test_branch_idx will be used.
trident_dilations (tuple[int]) – Dilations of different trident branch. len(trident_dilations) should be equal to num_branch.
data_preprocessors¶
- class mmdet.models.data_preprocessors.BatchFixedSizePad(size: Tuple[int, int], img_pad_value: int = 0, pad_mask: bool = False, mask_pad_value: int = 0, pad_seg: bool = False, seg_pad_value: int = 255)[source]¶
Fixed size padding for batch images.
- Parameters
size (Tuple[int, int]) – Fixed padding size. Expected padding shape (h, w). Defaults to None.
img_pad_value (int) – The padded pixel value for images. Defaults to 0.
pad_mask (bool) – Whether to pad instance masks. Defaults to False.
mask_pad_value (int) – The padded pixel value for instance masks. Defaults to 0.
pad_seg (bool) – Whether to pad semantic segmentation maps. Defaults to False.
seg_pad_value (int) – The padded pixel value for semantic segmentation maps. Defaults to 255.
- class mmdet.models.data_preprocessors.BatchResize(scale: tuple, pad_size_divisor: int = 1, pad_value: Union[float, int] = 0)[source]¶
Batch resize during training. This implementation is modified from https://github.com/Purkialo/CrowdDet/blob/master/lib/data/CrowdHuman.py.
It provides the data pre-processing as follows: - A batch of all images will pad to a uniform size and stack them into
a torch.Tensor by DetDataPreprocessor.
BatchFixShapeResize resize all images to the target size.
Padding images to make sure the size of image can be divisible by
pad_size_divisor
.
- Parameters
scale (tuple) – Images scales for resizing.
pad_size_divisor (int) – Image size divisible factor. Defaults to 1.
pad_value (Number) – The padded pixel value. Defaults to 0.
- forward(inputs: Tensor, data_samples: List[DetDataSample]) Tuple[Tensor, List[DetDataSample]] [source]¶
Resize a batch of images and bboxes.
- class mmdet.models.data_preprocessors.BatchSyncRandomResize(random_size_range: Tuple[int, int], interval: int = 10, size_divisor: int = 32)[source]¶
Batch random resize which synchronizes the random size across ranks.
- Parameters
random_size_range (tuple) – The multi-scale random range during multi-scale training.
interval (int) – The iter interval of change image size. Defaults to 10.
size_divisor (int) – Image size divisible factor. Defaults to 32.
- forward(inputs: Tensor, data_samples: List[DetDataSample]) Tuple[Tensor, List[DetDataSample]] [source]¶
Resize a batch of images and bboxes to shape
self._input_size
- class mmdet.models.data_preprocessors.BoxInstDataPreprocessor(*arg, mask_stride: int = 4, pairwise_size: int = 3, pairwise_dilation: int = 2, pairwise_color_thresh: float = 0.3, bottom_pixels_removed: int = 10, **kwargs)[source]¶
Pseudo mask pre-processor for BoxInst.
Comparing with the
mmdet.DetDataPreprocessor
,It generates masks using box annotations.
It computes the images color similarity in LAB color space.
- Parameters
mask_stride (int) – The mask output stride in boxinst. Defaults to 4.
pairwise_size (int) – The size of neighborhood for each pixel. Defaults to 3.
pairwise_dilation (int) – The dilation of neighborhood for each pixel. Defaults to 2.
pairwise_color_thresh (float) – The thresh of image color similarity. Defaults to 0.3.
bottom_pixels_removed (int) – The length of removed pixels in bottom. It is caused by the annotation error in coco dataset. Defaults to 10.
- class mmdet.models.data_preprocessors.DetDataPreprocessor(mean: Optional[Sequence[Number]] = None, std: Optional[Sequence[Number]] = None, pad_size_divisor: int = 1, pad_value: Union[float, int] = 0, pad_mask: bool = False, mask_pad_value: int = 0, pad_seg: bool = False, seg_pad_value: int = 255, bgr_to_rgb: bool = False, rgb_to_bgr: bool = False, boxtype2tensor: bool = True, non_blocking: Optional[bool] = False, batch_augments: Optional[List[dict]] = None)[source]¶
Image pre-processor for detection tasks.
Comparing with the
mmengine.ImgDataPreprocessor
,It supports batch augmentations.
2. It will additionally append batch_input_shape and pad_shape to data_samples considering the object detection task.
It provides the data pre-processing as follows
Collate and move data to the target device.
Pad inputs to the maximum size of current batch with defined
pad_value
. The padding size can be divisible by a definedpad_size_divisor
Stack inputs to batch_inputs.
Convert inputs from bgr to rgb if the shape of input is (3, H, W).
Normalize image with defined std and mean.
Do batch augmentations during training.
- Parameters
mean (Sequence[Number], optional) – The pixel mean of R, G, B channels. Defaults to None.
std (Sequence[Number], optional) – The pixel standard deviation of R, G, B channels. Defaults to None.
pad_size_divisor (int) – The size of padded image should be divisible by
pad_size_divisor
. Defaults to 1.pad_value (Number) – The padded pixel value. Defaults to 0.
pad_mask (bool) – Whether to pad instance masks. Defaults to False.
mask_pad_value (int) – The padded pixel value for instance masks. Defaults to 0.
pad_seg (bool) – Whether to pad semantic segmentation maps. Defaults to False.
seg_pad_value (int) – The padded pixel value for semantic segmentation maps. Defaults to 255.
bgr_to_rgb (bool) – whether to convert image from BGR to RGB. Defaults to False.
rgb_to_bgr (bool) – whether to convert image from RGB to RGB. Defaults to False.
boxtype2tensor (bool) – Whether to convert the
BaseBoxes
type of bboxes data toTensor
type. Defaults to True.non_blocking (bool) – Whether block current process when transferring data to device. Defaults to False.
batch_augments (list[dict], optional) – Batch-level augmentations
- forward(data: dict, training: bool = False) dict [source]¶
Perform normalization,padding and bgr2rgb conversion based on
BaseDataPreprocessor
.- Parameters
data (dict) – Data sampled from dataloader.
training (bool) – Whether to enable training time augmentation.
- Returns
Data in the same format as the model input.
- Return type
dict
- pad_gt_masks(batch_data_samples: Sequence[DetDataSample]) None [source]¶
Pad gt_masks to shape of batch_input_shape.
- pad_gt_sem_seg(batch_data_samples: Sequence[DetDataSample]) None [source]¶
Pad gt_sem_seg to shape of batch_input_shape.
- class mmdet.models.data_preprocessors.MultiBranchDataPreprocessor(data_preprocessor: Union[ConfigDict, dict])[source]¶
DataPreprocessor wrapper for multi-branch data.
Take semi-supervised object detection as an example, assume that the ratio of labeled data and unlabeled data in a batch is 1:2, sup indicates the branch where the labeled data is augmented, unsup_teacher and unsup_student indicate the branches where the unlabeled data is augmented by different pipeline.
The input format of multi-branch data is shown as below :
The format of multi-branch data after filtering None is shown as below :
In order to reuse DetDataPreprocessor for the data from different branches, the format of multi-branch data grouped by branch is as below :
After preprocessing data from different branches, the multi-branch data needs to be reformatted as:
- Parameters
data_preprocessor (
ConfigDict
or dict) – Config ofDetDataPreprocessor
to process the input data.
- cpu(*args, **kwargs) Module [source]¶
Overrides this method to set the
device
- Returns
The model itself.
- Return type
nn.Module
- cuda(*args, **kwargs) Module [source]¶
Overrides this method to set the
device
- Returns
The model itself.
- Return type
nn.Module
- forward(data: dict, training: bool = False) dict [source]¶
Perform normalization,padding and bgr2rgb conversion based on
BaseDataPreprocessor
for multi-branch data.- Parameters
data (dict) – Data sampled from dataloader.
training (bool) – Whether to enable training time augmentation.
- Returns
- ‘inputs’ (Dict[str, obj:torch.Tensor]): The forward data of
models from different branches.
- ’data_sample’ (Dict[str, obj:DetDataSample]): The annotation
info of the sample from different branches.
- Return type
dict
- class mmdet.models.data_preprocessors.ReIDDataPreprocessor(mean: Optional[Sequence[Number]] = None, std: Optional[Sequence[Number]] = None, pad_size_divisor: int = 1, pad_value: Number = 0, to_rgb: bool = False, to_onehot: bool = False, num_classes: Optional[int] = None, batch_augments: Optional[dict] = None)[source]¶
Image pre-processor for classification tasks.
Comparing with the
mmengine.model.ImgDataPreprocessor
,It won’t do normalization if
mean
is not specified.It does normalization and color space conversion after stacking batch.
It supports batch augmentations like mixup and cutmix.
It provides the data pre-processing as follows
Collate and move data to the target device.
Pad inputs to the maximum size of current batch with defined
pad_value
. The padding size can be divisible by a definedpad_size_divisor
Stack inputs to batch_inputs.
Convert inputs from bgr to rgb if the shape of input is (3, H, W).
Normalize image with defined std and mean.
Do batch augmentations like Mixup and Cutmix during training.
- Parameters
mean (Sequence[Number], optional) – The pixel mean of R, G, B channels. Defaults to None.
std (Sequence[Number], optional) – The pixel standard deviation of R, G, B channels. Defaults to None.
pad_size_divisor (int) – The size of padded image should be divisible by
pad_size_divisor
. Defaults to 1.pad_value (Number) – The padded pixel value. Defaults to 0.
to_rgb (bool) – whether to convert image from BGR to RGB. Defaults to False.
to_onehot (bool) – Whether to generate one-hot format gt-labels and set to data samples. Defaults to False.
num_classes (int, optional) – The number of classes. Defaults to None.
batch_augments (dict, optional) – The batch augmentations settings, including “augments” and “probs”. For more details, see
mmpretrain.models.RandomBatchAugment
.
- forward(data: dict, training: bool = False) dict [source]¶
Perform normalization, padding, bgr2rgb conversion and batch augmentation based on
BaseDataPreprocessor
.- Parameters
data (dict) – data sampled from dataloader.
training (bool) – Whether to enable training time augmentation.
- Returns
Data in the same format as the model input.
- Return type
dict
- class mmdet.models.data_preprocessors.TrackDataPreprocessor(mean: Optional[Sequence[Union[float, int]]] = None, std: Optional[Sequence[Union[float, int]]] = None, use_det_processor: bool = False, **kwargs)[source]¶
Image pre-processor for tracking tasks.
Accepts the data sampled by the dataloader, and preprocesses it into the format of the model input.
TrackDataPreprocessor
provides the tracking data pre-processing as follows:Collate and move data to the target device.
Pad inputs to the maximum size of current batch with defined
pad_value
. The padding size can be divisible by a definedpad_size_divisor
Stack inputs to inputs.
Convert inputs from bgr to rgb if the shape of input is (1, 3, H, W).
Normalize image with defined std and mean.
Do batch augmentations during training.
Record the information of
batch_input_shape
andpad_shape
.
- Args:
- mean (Sequence[Number], optional): The pixel mean of R, G, B
channels. Defaults to None.
- std (Sequence[Number], optional): The pixel standard deviation of
R, G, B channels. Defaults to None.
- pad_size_divisor (int): The size of padded image should be
divisible by
pad_size_divisor
. Defaults to 1.
pad_value (Number): The padded pixel value. Defaults to 0. pad_mask (bool): Whether to pad instance masks. Defaults to False. mask_pad_value (int): The padded pixel value for instance masks.
Defaults to 0.
- bgr_to_rgb (bool): whether to convert image from BGR to RGB.
Defaults to False.
- rgb_to_bgr (bool): whether to convert image from RGB to RGB.
Defaults to False.
- use_det_processor: (bool): whether to use DetDataPreprocessor
in training phrase. This is mainly for some tracking models fed into one image rather than a group of image in training. Defaults to False.
- . boxtype2tensor (bool): Whether to convert the
BaseBoxes
type of bboxes data to
Tensor
type. Defaults to True.batch_augments (list[dict], optional): Batch-level augmentations
- forward(data: dict, training: bool = False) Dict [source]¶
Perform normalization,padding and bgr2rgb conversion based on
TrackDataPreprocessor
.- Parameters
data (dict) – data sampled from dataloader.
training (bool) – Whether to enable training time augmentation.
- Returns
Data in the same format as the model input.
- Return type
Tuple[Dict[str, List[torch.Tensor]], OptSampleList]
- pad_track_gt_masks(data_samples: Sequence[TrackDataSample]) None [source]¶
Pad gt_masks to shape of batch_input_shape.
dense_heads¶
- class mmdet.models.dense_heads.ATSSHead(num_classes: int, in_channels: int, pred_kernel_size: int = 3, stacked_convs: int = 4, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 32, 'requires_grad': True, 'type': 'GN'}, reg_decoded_bbox: bool = True, loss_centerness: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'atss_cls', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'}, **kwargs)[source]¶
Detection Head of ATSS.
ATSS head structure is similar with FCOS, however ATSS use anchor boxes and assign label by Adaptive Training Sample Selection instead max-iou.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
pred_kernel_size (int) – Kernel size of
nn.Conv2d
stacked_convs (int) – Number of stacking convs of the head.
conv_cfg (
ConfigDict
or dict, optional) – Config dict for convolution layer. Defaults to None.norm_cfg (
ConfigDict
or dict) – Config dict for normalization layer. Defaults todict(type='GN', num_groups=32, requires_grad=True)
.reg_decoded_bbox (bool) – If true, the regression loss would be applied directly on decoded bounding boxes, converting both the predicted boxes and regression targets to absolute coordinates format. Defaults to False. It should be True when using IoULoss, GIoULoss, or DIoULoss in the bbox head.
loss_centerness (
ConfigDict
or dict) – Config of centerness loss. Defaults todict(type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0)
.
:param init_cfg (
ConfigDict
or dict or list[dict] or: list[ConfigDict
]): Initialization config dict.- centerness_target(anchors: Tensor, gts: Tensor) Tensor [source]¶
Calculate the centerness between anchors and gts.
Only calculate pos centerness targets, otherwise there may be nan.
- Parameters
anchors (Tensor) – Anchors with shape (N, 4), “xyxy” format.
gts (Tensor) – Ground truth bboxes with shape (N, 4), “xyxy” format.
- Returns
Centerness between anchors and gts.
- Return type
Tensor
- forward(x: Tuple[Tensor]) Tuple[List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
- Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is num_anchors * num_classes.
- bbox_preds (list[Tensor]): Box energies / deltas for all scale
levels, each is a 4D-tensor, the channels number is num_anchors * 4.
- Return type
tuple
- forward_single(x: Tensor, scale: Scale) Sequence[Tensor] [source]¶
Forward feature of a single scale level.
- Parameters
x (Tensor) – Features of a single scale level.
( (scale) – obj: mmcv.cnn.Scale): Learnable scale module to resize the bbox prediction.
- Returns
- cls_score (Tensor): Cls scores for a single scale level
the channels number is num_anchors * num_classes.
- bbox_pred (Tensor): Box energies / deltas for a single scale
level, the channels number is num_anchors * 4.
- centerness (Tensor): Centerness for a single scale level, the
channel number is (N, num_anchors * 1, H, W).
- Return type
tuple
- get_num_level_anchors_inside(num_level_anchors, inside_flags)[source]¶
Get the number of valid anchors in every level.
- get_targets(anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs: bool = True) tuple [source]¶
Get targets for ATSS head.
This method is almost the same as AnchorHead.get_targets(). Besides returning the targets as the parent method does, it also returns the anchors as the first element of the returned tuple.
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], centernesses: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
centernesses (list[Tensor]) – Centerness for each scale level with shape (N, num_anchors * 1, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_by_feat_single(anchors: Tensor, cls_score: Tensor, bbox_pred: Tensor, centerness: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, avg_factor: float) dict [source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
cls_score (Tensor) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
anchors (Tensor) – Box reference for each scale level with shape (N, num_total_anchors, 4).
labels (Tensor) – Labels of each anchors with shape (N, num_total_anchors).
label_weights (Tensor) – Label weights of each anchor with shape (N, num_total_anchors)
bbox_targets (Tensor) – BBox regression targets of each anchor with shape (N, num_total_anchors, 4).
avg_factor (float) – Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using PseudoSampler, avg_factor is usually equal to the number of positive priors.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.ATSSVLFusionHead(*args, early_fuse: bool = False, use_checkpoint: bool = False, num_dyhead_blocks: int = 6, lang_model_name: str = 'bert-base-uncased', init_cfg=None, **kwargs)[source]¶
ATSS head with visual-language fusion module.
- Parameters
early_fuse (bool) – Whether to fuse visual and language features Defaults to False.
use_checkpoint (bool) – Whether to use checkpoint. Defaults to False.
num_dyhead_blocks (int) – Number of dynamic head blocks. Defaults to 6.
lang_model_name (str) – Name of the language model. Defaults to ‘bert-base-uncased’.
- centerness_target(anchors: Tensor, gts: Tensor) Tensor [source]¶
Calculate the centerness between anchors and gts.
Only calculate pos centerness targets, otherwise there may be nan.
- Parameters
anchors (Tensor) – Anchors with shape (N, 4), “xyxy” format.
gts (Tensor) – Ground truth bboxes with shape (N, 4), “xyxy” format.
- Returns
Centerness between anchors and gts.
- Return type
Tensor
- forward(visual_feats: Tuple[Tensor], language_feats: dict) Tuple[Tensor] [source]¶
Forward function.
- loss(visual_feats: Tuple[Tensor], language_feats: dict, batch_data_samples)[source]¶
Perform forward propagation and loss calculation of the detection head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], centernesses: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
centernesses (list[Tensor]) – Centerness for each scale level with shape (N, num_anchors * 1, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- predict(visual_feats: Tuple[Tensor], language_feats: dict, batch_data_samples, rescale: bool = True)[source]¶
Perform forward propagation of the detection head and predict detection results on the features of the upstream network.
- Parameters
visual_feats (tuple[Tensor]) – Multi-level visual features from the upstream network, each is a 4D-tensor.
language_feats (dict) – Language features from the upstream network.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
InstanceData]: Detection results of each image after the post process.
- Return type
list[obj
- predict_by_feat(cls_logits: List[Tensor], bbox_preds: List[Tensor], score_factors: List[Tensor], batch_img_metas: Optional[List[dict]] = None, batch_token_positive_maps: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
Note: When score_factors is not None, the cls_scores are usually multiplied by it then obtain the real score used in NMS, such as CenterNess in FCOS, IoU branch in ATSS.
- Parameters
cls_logits (list[Tensor]) – Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W).
score_factors (list[Tensor], optional) – Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None.
batch_img_metas (list[dict], Optional) – Batch image meta info. Defaults to None.
batch_token_positive_maps (list[dict], Optional) – Batch token positive map. Defaults to None.
cfg (ConfigDict, optional) – Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
with_nms (bool) – If True, do nms before return boxes. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.AnchorFreeHead(num_classes: int, in_channels: int, feat_channels: int = 256, stacked_convs: int = 4, strides: Union[Sequence[int], Sequence[Tuple[int, int]]] = (4, 8, 16, 32, 64), dcn_on_last_conv: bool = False, conv_bias: Union[bool, str] = 'auto', loss_cls: Union[ConfigDict, dict] = {'alpha': 0.25, 'gamma': 2.0, 'loss_weight': 1.0, 'type': 'FocalLoss', 'use_sigmoid': True}, loss_bbox: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'IoULoss'}, bbox_coder: Union[ConfigDict, dict] = {'type': 'DistancePointBBoxCoder'}, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'conv_cls', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'})[source]¶
Anchor-free head (FCOS, Fovea, RepPoints, etc.).
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
feat_channels (int) – Number of hidden channels. Used in child classes.
stacked_convs (int) – Number of stacking convs of the head.
strides (Sequence[int] or Sequence[Tuple[int, int]]) – Downsample factor of each feature map.
dcn_on_last_conv (bool) – If true, use dcn in the last layer of towers. Defaults to False.
conv_bias (bool or str) – If specified as auto, it will be decided by the norm_cfg. Bias of conv will be set as True if norm_cfg is None, otherwise False. Default: “auto”.
loss_cls (
ConfigDict
or dict) – Config of classification loss.loss_bbox (
ConfigDict
or dict) – Config of localization loss.bbox_coder (
ConfigDict
or dict) – Config of bbox coder. Defaults ‘DistancePointBBoxCoder’.conv_cfg (
ConfigDict
or dict, Optional) – Config dict for convolution layer. Defaults to None.norm_cfg (
ConfigDict
or dict, Optional) – Config dict for normalization layer. Defaults to None.train_cfg (
ConfigDict
or dict, Optional) – Training config of anchor-free head.test_cfg (
ConfigDict
or dict, Optional) – Testing config of anchor-free head.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict]) – Initialization config dict.
- aug_test(aug_batch_feats: List[Tensor], aug_batch_img_metas: List[List[Tensor]], rescale: bool = False) List[ndarray] [source]¶
Test function with test time augmentation.
- Parameters
aug_batch_feats (list[Tensor]) – the outer list indicates test-time augmentations and inner Tensor should have a shape NxCxHxW, which contains features for all images in the batch.
aug_batch_img_metas (list[list[dict]]) – the outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. each dict has image information.
rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
bbox results of each class
- Return type
list[ndarray]
- forward(x: Tuple[Tensor]) Tuple[List[Tensor], List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
Usually contain classification scores and bbox predictions.
cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
- Return type
tuple
- forward_single(x: Tensor) Tuple[Tensor, ...] [source]¶
Forward features of a single scale level.
- Parameters
x (Tensor) – FPN feature maps of the specified stride.
- Returns
Scores for each class, bbox predictions, features after classification and regression conv layers, some models needs these features like FCOS.
- Return type
tuple
- abstract get_targets(points: List[Tensor], batch_gt_instances: List[InstanceData]) Any [source]¶
Compute regression, classification and centerness targets for points in multiple images.
- Parameters
points (list[Tensor]) – Points of each fpn level, each has shape (num_points, 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.
- abstract loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes.
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- class mmdet.models.dense_heads.AnchorHead(num_classes: int, in_channels: int, feat_channels: int = 256, anchor_generator: Union[ConfigDict, dict] = {'ratios': [0.5, 1.0, 2.0], 'scales': [8, 16, 32], 'strides': [4, 8, 16, 32, 64], 'type': 'AnchorGenerator'}, bbox_coder: Union[ConfigDict, dict] = {'clip_border': True, 'target_means': (0.0, 0.0, 0.0, 0.0), 'target_stds': (1.0, 1.0, 1.0, 1.0), 'type': 'DeltaXYWHBBoxCoder'}, reg_decoded_bbox: bool = False, loss_cls: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_bbox: Union[ConfigDict, dict] = {'beta': 0.1111111111111111, 'loss_weight': 1.0, 'type': 'SmoothL1Loss'}, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = {'layer': 'Conv2d', 'std': 0.01, 'type': 'Normal'})[source]¶
Anchor-based head (RPN, RetinaNet, SSD, etc.).
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
feat_channels (int) – Number of hidden channels. Used in child classes.
anchor_generator (dict) – Config dict for anchor generator
bbox_coder (dict) – Config of bounding box coder.
reg_decoded_bbox (bool) – If true, the regression loss would be applied directly on decoded bounding boxes, converting both the predicted boxes and regression targets to absolute coordinates format. Default False. It should be True when using IoULoss, GIoULoss, or DIoULoss in the bbox head.
loss_cls (dict) – Config of classification loss.
loss_bbox (dict) – Config of localization loss.
train_cfg (dict) – Training config of anchor head.
test_cfg (dict) – Testing config of anchor head.
init_cfg (dict or list[dict], optional) – Initialization config dict.
- forward(x: Tuple[Tensor]) Tuple[List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of classification scores and bbox prediction.
cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
- Return type
tuple
- forward_single(x: Tensor) Tuple[Tensor, Tensor] [source]¶
Forward feature of a single scale level.
- Parameters
x (Tensor) – Features of a single scale level.
- Returns
cls_score (Tensor): Cls scores for a single scale level the channels number is num_base_priors * num_classes. bbox_pred (Tensor): Box energies / deltas for a single scale level, the channels number is num_base_priors * 4.
- Return type
tuple
- get_anchors(featmap_sizes: List[tuple], batch_img_metas: List[dict], device: Union[device, str] = 'cuda') Tuple[List[List[Tensor]], List[List[Tensor]]] [source]¶
Get anchors according to feature map sizes.
- Parameters
featmap_sizes (list[tuple]) – Multi-level feature map sizes.
batch_img_metas (list[dict]) – Image meta info.
device (torch.device | str) – Device for returned tensors. Defaults to cuda.
- Returns
anchor_list (list[list[Tensor]]): Anchors of each image.
valid_flag_list (list[list[Tensor]]): Valid flags of each image.
- Return type
tuple
- get_targets(anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs: bool = True, return_sampling_results: bool = False) tuple [source]¶
Compute regression and classification targets for anchors in multiple images.
- Parameters
anchor_list (list[list[Tensor]]) – Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]) – Multi level valid flags of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, )
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.unmap_outputs (bool) – Whether to map outputs back to the original set of anchors. Defaults to True.
return_sampling_results (bool) – Whether to return the sampling results. Defaults to False.
- Returns
Usually returns a tuple containing learning targets.
labels_list (list[Tensor]): Labels of each level.
label_weights_list (list[Tensor]): Label weights of each level.
bbox_targets_list (list[Tensor]): BBox targets of each level.
bbox_weights_list (list[Tensor]): BBox weights of each level.
avg_factor (int): Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using PseudoSampler, avg_factor is usually equal to the number of positive priors.
- additional_returns: This function enables user-defined returns from
self._get_targets_single. These returns are currently refined to properties at each feature map (i.e. having HxW dimension). The results will be concatenated after the end
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_by_feat_single(cls_score: Tensor, bbox_pred: Tensor, anchors: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, bbox_weights: Tensor, avg_factor: int) tuple [source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
cls_score (Tensor) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
anchors (Tensor) – Box reference for each scale level with shape (N, num_total_anchors, 4).
labels (Tensor) – Labels of each anchors with shape (N, num_total_anchors).
label_weights (Tensor) – Label weights of each anchor with shape (N, num_total_anchors)
bbox_targets (Tensor) – BBox regression targets of each anchor weight shape (N, num_total_anchors, 4).
bbox_weights (Tensor) – BBox regression loss weights of each anchor with shape (N, num_total_anchors, 4).
avg_factor (int) – Average factor that is used to average the loss.
- Returns
loss components.
- Return type
tuple
- class mmdet.models.dense_heads.AutoAssignHead(*args, force_topk: bool = False, topk: int = 9, pos_loss_weight: float = 0.25, neg_loss_weight: float = 0.75, center_loss_weight: float = 0.75, **kwargs)[source]¶
AutoAssignHead head used in AutoAssign.
More details can be found in the paper .
- Parameters
force_topk (bool) – Used in center prior initialization to handle extremely small gt. Default is False.
topk (int) – The number of points used to calculate the center prior when no point falls in gt_bbox. Only work when force_topk if True. Defaults to 9.
pos_loss_weight (float) – The loss weight of positive loss and with default value 0.25.
neg_loss_weight (float) – The loss weight of negative loss and with default value 0.75.
center_loss_weight (float) – The loss weight of center prior loss and with default value 0.75.
- forward_single(x: Tensor, scale: Scale, stride: int) Tuple[Tensor, Tensor, Tensor] [source]¶
Forward features of a single scale level.
- Parameters
x (Tensor) – FPN feature maps of the specified stride.
scale (
mmcv.cnn.Scale
) – Learnable scale module to resize the bbox prediction.stride (int) – The corresponding stride for feature maps, only used to normalize the bbox prediction when self.norm_on_bbox is True.
- Returns
scores for each class, bbox predictions and centerness predictions of input feature maps.
- Return type
tuple[Tensor, Tensor, Tensor]
- get_neg_loss_single(cls_score: Tensor, objectness: Tensor, gt_instances: InstanceData, ious: Tensor, inside_gt_bbox_mask: Tensor) Tuple[Tensor] [source]¶
Calculate the negative loss of all points in feature map.
- Parameters
cls_score (Tensor) – All category scores for each point on the feature map. The shape is (num_points, num_class).
objectness (Tensor) – Foreground probability of all points and is shape of (num_points, 1).
gt_instances (
InstanceData
) – Ground truth of instance annotations. It should includesbboxes
andlabels
attributes.ious (Tensor) – Float tensor with shape of (num_points, num_gt). Each value represent the iou of pred_bbox and gt_bboxes.
inside_gt_bbox_mask (Tensor) – Tensor of bool type, with shape of (num_points, num_gt), each value is used to mark whether this point falls within a certain gt.
- Returns
neg_loss (Tensor): The negative loss of all points in the feature map.
- Return type
tuple[Tensor]
- get_pos_loss_single(cls_score: Tensor, objectness: Tensor, reg_loss: Tensor, gt_instances: InstanceData, center_prior_weights: Tensor) Tuple[Tensor] [source]¶
Calculate the positive loss of all points in gt_bboxes.
- Parameters
cls_score (Tensor) – All category scores for each point on the feature map. The shape is (num_points, num_class).
objectness (Tensor) – Foreground probability of all points, has shape (num_points, 1).
reg_loss (Tensor) – The regression loss of each gt_bbox and each prediction box, has shape of (num_points, num_gt).
gt_instances (
InstanceData
) – Ground truth of instance annotations. It should includesbboxes
andlabels
attributes.center_prior_weights (Tensor) – Float tensor with shape of (num_points, num_gt). Each value represents the center weighting coefficient.
- Returns
pos_loss (Tensor): The positive loss of all points in the gt_bboxes.
- Return type
tuple[Tensor]
- get_targets(points: List[Tensor], batch_gt_instances: List[InstanceData]) Tuple[List[Tensor], List[Tensor]] [source]¶
Compute regression targets and each point inside or outside gt_bbox in multiple images.
- Parameters
points (list[Tensor]) – Points of all fpn level, each has shape (num_points, 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.
- Returns
inside_gt_bbox_mask_list (list[Tensor]): Each Tensor is with bool type and shape of (num_points, num_gt), each value is used to mark whether this point falls within a certain gt.
concat_lvl_bbox_targets (list[Tensor]): BBox targets of each level. Each tensor has shape (num_points, num_gt, 4).
- Return type
tuple(list[Tensor], list[Tensor])
- init_weights() None [source]¶
Initialize weights of the head.
In particular, we have special initialization for classified conv’s and regression conv’s bias
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], objectnesses: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes.
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
objectnesses (list[Tensor]) – objectness for each scale level, each is a 4D-tensor, the channel number is num_points * 1.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.BoxInstBboxHead(*args, **kwargs)[source]¶
BoxInst box head used in https://arxiv.org/abs/2012.02310.
- class mmdet.models.dense_heads.BoxInstMaskHead(*arg, pairwise_size: int = 3, pairwise_dilation: int = 2, warmup_iters: int = 10000, **kwargs)[source]¶
BoxInst mask head used in https://arxiv.org/abs/2012.02310.
This head outputs the mask for BoxInst.
- Parameters
pairwise_size (dict) – The size of neighborhood for each pixel. Defaults to 3.
pairwise_dilation (int) – The dilation of neighborhood for each pixel. Defaults to 2.
warmup_iters (int) – Warmup iterations for pair-wise loss. Defaults to 10000.
- get_pairwise_affinity(mask_logits: Tensor) Tensor [source]¶
Compute the pairwise affinity for each pixel.
- loss_by_feat(mask_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], positive_infos: List[InstanceData], **kwargs) dict [source]¶
Calculate the loss based on the features extracted by the mask head.
- Parameters
mask_preds (list[Tensor]) – List of predicted masks, each has shape (num_classes, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,masks
, andlabels
attributes.batch_img_metas (list[dict]) – Meta information of multiple images.
positive_infos (List[:obj:
InstanceData
]) – Information of positive samples of each image that are assigned in detection head.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.CLRHead(num_points: int = 72, prior_feat_channels: int = 64, fc_hidden_dim: int = 64, num_priors: int = 192, num_fc: int = 2, refine_layers: int = 3, sample_points: int = 36, img_w: int = 800, img_h: int = 320, num_classes: int = 5, cut_height: int = 0, cls_loss: Optional[dict] = None, cls_loss_weight: float = 2.0, xyt_loss_weight: float = 0.5, iou_loss_weight: float = 2.0, seg_loss_weight: float = 1.0, num_classes_seg: int = 5, train_cfg=None, test_cfg=None)[source]¶
- forward(inputs, batch_data_samples, training: bool = False, **kwargs)[source]¶
Take pyramid features as input to perform Cross Layer Refinement and finally output the prediction lanes.
Each feature is a 4D tensor. :param x: input features (list[Tensor])
- Returns
each layer’s prediction result seg: segmentation result for auxiliary loss
- Return type
prediction_list
- get_lanes(output, org_widths, as_lanes=True, conf_threshold=0.05, nms_threshold=0.5, top_k=5)[source]¶
Convert model output to lanes.
- pool_prior_features(batch_features, num_priors, prior_xs)[source]¶
Pool prior feature from feature map.
- Parameters
batch_features (Tensor) – Input feature maps, shape: (B, C, H, W)
- class mmdet.models.dense_heads.CascadeRPNHead(num_classes: int, num_stages: int, stages: List[Union[ConfigDict, dict]], train_cfg: List[Union[ConfigDict, dict]], test_cfg: Union[ConfigDict, dict], init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
The CascadeRPNHead will predict more accurate region proposals, which is required for two-stage detectors (such as Fast/Faster R-CNN). CascadeRPN consists of a sequence of RPNStage to progressively improve the accuracy of the detected proposals.
More details can be found in
https://arxiv.org/abs/1909.06720
.- Parameters
num_stages (int) – number of CascadeRPN stages.
stages (list[
ConfigDict
or dict]) – list of configs to build the stages.train_cfg (list[
ConfigDict
or dict]) – list of configs at training time each stage.test_cfg (
ConfigDict
or dict) – config at testing time.init_cfg (
ConfigDict
or list[ConfigDict
] or dict or list[dict]) – Initialization config dict.
- loss(x: Tuple[Tensor], batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_and_predict(x: Tuple[Tensor], batch_data_samples: List[DetDataSample], proposal_cfg: Optional[ConfigDict] = None) Tuple[dict, List[InstanceData]] [source]¶
Perform forward propagation of the head, then calculate loss and predictions from the features and data samples.
- Parameters
x (tuple[Tensor]) – Features from FPN.
batch_data_samples (list[
DetDataSample
]) – Each item contains the meta information of each image and corresponding annotations.proposal_cfg (ConfigDict, optional) – Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None.
- Returns
the return value is a tuple contains:
losses: (dict[str, Tensor]): A dictionary of loss components.
predictions (list[
InstanceData
]): Detection results of each image after the post process.
- Return type
tuple
- predict(x: Tuple[Tensor], batch_data_samples: List[DetDataSample], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the detection head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Multi-level features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
InstanceData]: Detection results of each image after the post process.
- Return type
list[obj
- class mmdet.models.dense_heads.CenterNetHead(in_channels: int, feat_channels: int, num_classes: int, loss_center_heatmap: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'GaussianFocalLoss'}, loss_wh: Union[ConfigDict, dict] = {'loss_weight': 0.1, 'type': 'L1Loss'}, loss_offset: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'L1Loss'}, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Objects as Points Head. CenterHead use center_point to indicate object’s position. Paper link <https://arxiv.org/abs/1904.07850>
- Parameters
in_channels (int) – Number of channel in the input feature map.
feat_channels (int) – Number of channel in the intermediate feature map.
num_classes (int) – Number of categories excluding the background category.
loss_center_heatmap (
ConfigDict
or dict) – Config of center heatmap loss. Defaults to dict(type=’GaussianFocalLoss’, loss_weight=1.0)loss_wh (
ConfigDict
or dict) – Config of wh loss. Defaults to dict(type=’L1Loss’, loss_weight=0.1).loss_offset (
ConfigDict
or dict) – Config of offset loss. Defaults to dict(type=’L1Loss’, loss_weight=1.0).train_cfg (
ConfigDict
or dict, optional) – Training config. Useless in CenterNet, but we keep this variable for SingleStageDetector.test_cfg (
ConfigDict
or dict, optional) – Testing config of CenterNet.
- :param init_cfg (
ConfigDict
or dict or list[dict] or: list[ConfigDict
], optional): Initialization config dict.
- forward(x: Tuple[Tensor, ...]) Tuple[List[Tensor]] [source]¶
Forward features. Notice CenterNet head does not use FPN.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
- center predict heatmaps for
all levels, the channels number is num_classes.
- wh_preds (list[Tensor]): wh predicts for all levels, the channels
number is 2.
- offset_preds (list[Tensor]): offset predicts for all levels, the
channels number is 2.
- Return type
center_heatmap_preds (list[Tensor])
- forward_single(x: Tensor) Tuple[Tensor, ...] [source]¶
Forward feature of a single level.
- Parameters
x (Tensor) – Feature of a single level.
- Returns
- center predict heatmaps, the
channels number is num_classes.
wh_pred (Tensor): wh predicts, the channels number is 2. offset_pred (Tensor): offset predicts, the channels number is 2.
- Return type
center_heatmap_pred (Tensor)
- get_targets(gt_bboxes: List[Tensor], gt_labels: List[Tensor], feat_shape: tuple, img_shape: tuple) Tuple[dict, int] [source]¶
Compute regression and classification targets in multiple images.
- Parameters
gt_bboxes (list[Tensor]) – Ground truth bboxes for each image with shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]) – class indices corresponding to each box.
feat_shape (tuple) – feature map shape with value [B, _, H, W]
img_shape (tuple) – image shape.
- Returns
The float value is mean avg_factor, the dict has components below:
center_heatmap_target (Tensor): targets of center heatmap, shape (B, num_classes, H, W).
wh_target (Tensor): targets of wh predict, shape (B, 2, H, W).
offset_target (Tensor): targets of offset predict, shape (B, 2, H, W).
wh_offset_target_weight (Tensor): weights of wh and offset predict, shape (B, 2, H, W).
- Return type
tuple[dict, float]
- loss_by_feat(center_heatmap_preds: List[Tensor], wh_preds: List[Tensor], offset_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Compute losses of the head.
- Parameters
center_heatmap_preds (list[Tensor]) – center predict heatmaps for all levels with shape (B, num_classes, H, W).
wh_preds (list[Tensor]) – wh predicts for all levels with shape (B, 2, H, W).
offset_preds (list[Tensor]) – offset predicts for all levels with shape (B, 2, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
- which has components below:
loss_center_heatmap (Tensor): loss of center heatmap.
loss_wh (Tensor): loss of hw heatmap
loss_offset (Tensor): loss of offset heatmap.
- Return type
dict[str, Tensor]
- predict_by_feat(center_heatmap_preds: List[Tensor], wh_preds: List[Tensor], offset_preds: List[Tensor], batch_img_metas: Optional[List[dict]] = None, rescale: bool = True, with_nms: bool = False) List[InstanceData] [source]¶
Transform network output for a batch into bbox predictions.
- Parameters
center_heatmap_preds (list[Tensor]) – Center predict heatmaps for all levels with shape (B, num_classes, H, W).
wh_preds (list[Tensor]) – WH predicts for all levels with shape (B, 2, H, W).
offset_preds (list[Tensor]) – Offset predicts for all levels with shape (B, 2, H, W).
batch_img_metas (list[dict], optional) – Batch image meta info. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to True.
with_nms (bool) – If True, do nms before return boxes. Defaults to False.
- Returns
Instance segmentation results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.CenterNetUpdateHead(num_classes: int, in_channels: int, regress_ranges: Sequence[Tuple[int, int]] = ((0, 80), (64, 160), (128, 320), (256, 640), (512, 1000000000)), hm_min_radius: int = 4, hm_min_overlap: float = 0.8, more_pos_thresh: float = 0.2, more_pos_topk: int = 9, soft_weight_on_reg: bool = False, loss_cls: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'neg_weight': 0.75, 'pos_weight': 0.25, 'type': 'GaussianFocalLoss'}, loss_bbox: Union[ConfigDict, dict] = {'loss_weight': 2.0, 'type': 'GIoULoss'}, norm_cfg: Optional[Union[ConfigDict, dict]] = {'num_groups': 32, 'requires_grad': True, 'type': 'GN'}, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, **kwargs)[source]¶
CenterNetUpdateHead is an improved version of CenterNet in CenterNet2. Paper link https://arxiv.org/abs/2103.07461.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channel in the input feature map.
regress_ranges (Sequence[Tuple[int, int]]) – Regress range of multiple level points.
hm_min_radius (int) – Heatmap target minimum radius of cls branch. Defaults to 4.
hm_min_overlap (float) – Heatmap target minimum overlap of cls branch. Defaults to 0.8.
more_pos_thresh (float) – The filtering threshold when the cls branch adds more positive samples. Defaults to 0.2.
more_pos_topk (int) – The maximum number of additional positive samples added to each gt. Defaults to 9.
soft_weight_on_reg (bool) – Whether to use the soft target of the cls branch as the soft weight of the bbox branch. Defaults to False.
loss_cls (
ConfigDict
or dict) – Config of cls loss. Defaults to dict(type=’GaussianFocalLoss’, loss_weight=1.0)loss_bbox (
ConfigDict
or dict) – Config of bbox loss. Defaults to dict(type=’GIoULoss’, loss_weight=2.0).norm_cfg (
ConfigDict
or dict, optional) – dictionary to construct and config norm layer. Defaults tonorm_cfg=dict(type='GN', num_groups=32, requires_grad=True)
.train_cfg (
ConfigDict
or dict, optional) – Training config. Unused in CenterNet. Reserved for compatibility with SingleStageDetector.test_cfg (
ConfigDict
or dict, optional) – Testing config of CenterNet.
- add_cls_pos_inds(flatten_points: Tensor, flatten_bbox_preds: Tensor, featmap_sizes: Tensor, batch_gt_instances: List[InstanceData]) Tuple[Optional[Tensor], Optional[Tensor]] [source]¶
Provide additional adaptive positive samples to the classification branch.
- Parameters
flatten_points (Tensor) – The point after flatten, including batch image and all levels. The shape is (N, 2).
flatten_bbox_preds (Tensor) – The bbox predicts after flatten, including batch image and all levels. The shape is (N, 4).
featmap_sizes (Tensor) – Feature map size of all layers. The shape is (5, 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.
- Returns
pos_inds (Tensor): Adaptively selected positive sample index.
cls_labels (Tensor): Corresponding positive class label.
- Return type
tuple
- forward(x: Tuple[Tensor]) Tuple[List[Tensor], List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of each level outputs.
cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is 4.
- Return type
tuple
- forward_single(x: Tensor, scale: Scale, stride: int) Tuple[Tensor, Tensor] [source]¶
Forward features of a single scale level.
- Parameters
x (Tensor) – FPN feature maps of the specified stride.
scale (
mmcv.cnn.Scale
) – Learnable scale module to resize the bbox prediction.stride (int) – The corresponding stride for feature maps.
- Returns
scores for each class, bbox predictions of input feature maps.
- Return type
tuple
- get_targets(points: List[Tensor], batch_gt_instances: List[InstanceData]) Tuple[Tensor, Tensor] [source]¶
Compute classification and bbox targets for points in multiple images.
- Parameters
points (list[Tensor]) – Points of each fpn level, each has shape (num_points, 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.
- Returns
Targets of each level.
concat_lvl_labels (Tensor): Labels of all level and batch.
concat_lvl_bbox_targets (Tensor): BBox targets of all level and batch.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level, each is a 4D-tensor, the channel number is num_classes.
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is 4.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.CentripetalHead(*args, centripetal_shift_channels: int = 2, guiding_shift_channels: int = 2, feat_adaption_conv_kernel: int = 3, loss_guiding_shift: Union[ConfigDict, dict] = {'beta': 1.0, 'loss_weight': 0.05, 'type': 'SmoothL1Loss'}, loss_centripetal_shift: Union[ConfigDict, dict] = {'beta': 1.0, 'loss_weight': 1, 'type': 'SmoothL1Loss'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, **kwargs)[source]¶
Head of CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection.
CentripetalHead inherits from
CornerHead
. It removes the embedding branch and adds guiding shift and centripetal shift branches. More details can be found in the paper .- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
num_feat_levels (int) – Levels of feature from the previous module. 2 for HourglassNet-104 and 1 for HourglassNet-52. HourglassNet-104 outputs the final feature and intermediate supervision feature and HourglassNet-52 only outputs the final feature. Defaults to 2.
corner_emb_channels (int) – Channel of embedding vector. Defaults to 1.
train_cfg (
ConfigDict
or dict, optional) – Training config. Useless in CornerHead, but we keep this variable for SingleStageDetector.test_cfg (
ConfigDict
or dict, optional) – Testing config of CornerHead.loss_heatmap (
ConfigDict
or dict) – Config of corner heatmap loss. Defaults to GaussianFocalLoss.loss_embedding (
ConfigDict
or dict) – Config of corner embedding loss. Defaults to AssociativeEmbeddingLoss.loss_offset (
ConfigDict
or dict) – Config of corner offset loss. Defaults to SmoothL1Loss.loss_guiding_shift (
ConfigDict
or dict) – Config of guiding shift loss. Defaults to SmoothL1Loss.loss_centripetal_shift – Config of centripetal shift loss. Defaults to SmoothL1Loss.
- forward_single(x: Tensor, lvl_ind: int) List[Tensor] [source]¶
Forward feature of a single level.
- Parameters
x (Tensor) – Feature of a single level.
lvl_ind (int) – Level index of current feature.
- Returns
A tuple of CentripetalHead’s output for current feature level. Containing the following Tensors:
tl_heat (Tensor): Predicted top-left corner heatmap.
br_heat (Tensor): Predicted bottom-right corner heatmap.
tl_off (Tensor): Predicted top-left offset heatmap.
br_off (Tensor): Predicted bottom-right offset heatmap.
tl_guiding_shift (Tensor): Predicted top-left guiding shift heatmap.
br_guiding_shift (Tensor): Predicted bottom-right guiding shift heatmap.
tl_centripetal_shift (Tensor): Predicted top-left centripetal shift heatmap.
br_centripetal_shift (Tensor): Predicted bottom-right centripetal shift heatmap.
- Return type
tuple[Tensor]
- loss_by_feat(tl_heats: List[Tensor], br_heats: List[Tensor], tl_offs: List[Tensor], br_offs: List[Tensor], tl_guiding_shifts: List[Tensor], br_guiding_shifts: List[Tensor], tl_centripetal_shifts: List[Tensor], br_centripetal_shifts: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
tl_heats (list[Tensor]) – Top-left corner heatmaps for each level with shape (N, num_classes, H, W).
br_heats (list[Tensor]) – Bottom-right corner heatmaps for each level with shape (N, num_classes, H, W).
tl_offs (list[Tensor]) – Top-left corner offsets for each level with shape (N, corner_offset_channels, H, W).
br_offs (list[Tensor]) – Bottom-right corner offsets for each level with shape (N, corner_offset_channels, H, W).
tl_guiding_shifts (list[Tensor]) – Top-left guiding shifts for each level with shape (N, guiding_shift_channels, H, W).
br_guiding_shifts (list[Tensor]) – Bottom-right guiding shifts for each level with shape (N, guiding_shift_channels, H, W).
tl_centripetal_shifts (list[Tensor]) – Top-left centripetal shifts for each level with shape (N, centripetal_shift_channels, H, W).
br_centripetal_shifts (list[Tensor]) – Bottom-right centripetal shifts for each level with shape (N, centripetal_shift_channels, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Specify which bounding boxes can be ignored when computing the loss.
- Returns
A dictionary of loss components. Containing the following losses:
det_loss (list[Tensor]): Corner keypoint losses of all feature levels.
off_loss (list[Tensor]): Corner offset losses of all feature levels.
guiding_loss (list[Tensor]): Guiding shift losses of all feature levels.
centripetal_loss (list[Tensor]): Centripetal shift losses of all feature levels.
- Return type
dict[str, Tensor]
- loss_by_feat_single(tl_hmp: Tensor, br_hmp: Tensor, tl_off: Tensor, br_off: Tensor, tl_guiding_shift: Tensor, br_guiding_shift: Tensor, tl_centripetal_shift: Tensor, br_centripetal_shift: Tensor, targets: dict) Tuple[Tensor, ...] [source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
tl_hmp (Tensor) – Top-left corner heatmap for current level with shape (N, num_classes, H, W).
br_hmp (Tensor) – Bottom-right corner heatmap for current level with shape (N, num_classes, H, W).
tl_off (Tensor) – Top-left corner offset for current level with shape (N, corner_offset_channels, H, W).
br_off (Tensor) – Bottom-right corner offset for current level with shape (N, corner_offset_channels, H, W).
tl_guiding_shift (Tensor) – Top-left guiding shift for current level with shape (N, guiding_shift_channels, H, W).
br_guiding_shift (Tensor) – Bottom-right guiding shift for current level with shape (N, guiding_shift_channels, H, W).
tl_centripetal_shift (Tensor) – Top-left centripetal shift for current level with shape (N, centripetal_shift_channels, H, W).
br_centripetal_shift (Tensor) – Bottom-right centripetal shift for current level with shape (N, centripetal_shift_channels, H, W).
targets (dict) – Corner target generated by get_targets.
- Returns
Losses of the head’s different branches containing the following losses:
det_loss (Tensor): Corner keypoint loss.
off_loss (Tensor): Corner offset loss.
guiding_loss (Tensor): Guiding shift loss.
centripetal_loss (Tensor): Centripetal shift loss.
- Return type
tuple[torch.Tensor]
- predict_by_feat(tl_heats: List[Tensor], br_heats: List[Tensor], tl_offs: List[Tensor], br_offs: List[Tensor], tl_guiding_shifts: List[Tensor], br_guiding_shifts: List[Tensor], tl_centripetal_shifts: List[Tensor], br_centripetal_shifts: List[Tensor], batch_img_metas: Optional[List[dict]] = None, rescale: bool = False, with_nms: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
- Parameters
tl_heats (list[Tensor]) – Top-left corner heatmaps for each level with shape (N, num_classes, H, W).
br_heats (list[Tensor]) – Bottom-right corner heatmaps for each level with shape (N, num_classes, H, W).
tl_offs (list[Tensor]) – Top-left corner offsets for each level with shape (N, corner_offset_channels, H, W).
br_offs (list[Tensor]) – Bottom-right corner offsets for each level with shape (N, corner_offset_channels, H, W).
tl_guiding_shifts (list[Tensor]) – Top-left guiding shifts for each level with shape (N, guiding_shift_channels, H, W). Useless in this function, we keep this arg because it’s the raw output from CentripetalHead.
br_guiding_shifts (list[Tensor]) – Bottom-right guiding shifts for each level with shape (N, guiding_shift_channels, H, W). Useless in this function, we keep this arg because it’s the raw output from CentripetalHead.
tl_centripetal_shifts (list[Tensor]) – Top-left centripetal shifts for each level with shape (N, centripetal_shift_channels, H, W).
br_centripetal_shifts (list[Tensor]) – Bottom-right centripetal shifts for each level with shape (N, centripetal_shift_channels, H, W).
batch_img_metas (list[dict], optional) – Batch image meta info. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
with_nms (bool) – If True, do nms before return boxes. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.CondInstBboxHead(*args, num_params: int = 169, **kwargs)[source]¶
CondInst box head used in https://arxiv.org/abs/1904.02689.
Note that CondInst Bbox Head is a extension of FCOS head. Two differences are described as follows:
CondInst box head predicts a set of params for each instance.
CondInst box head return the pos_gt_inds and pos_inds.
- Parameters
num_params (int) – Number of params for instance segmentation.
- forward_single(x: Tensor, scale: Scale, stride: int) Tuple[Tensor, Tensor, Tensor, Tensor] [source]¶
Forward features of a single scale level.
- Parameters
x (Tensor) – FPN feature maps of the specified stride.
scale (
mmcv.cnn.Scale
) – Learnable scale module to resize the bbox prediction.stride (int) – The corresponding stride for feature maps, only used to normalize the bbox prediction when self.norm_on_bbox is True.
- Returns
scores for each class, bbox predictions, centerness predictions and param predictions of input feature maps.
- Return type
tuple
- get_positive_infos() List[InstanceData] [source]¶
Get positive information from sampling results.
- Returns
Positive information of each image, usually including positive bboxes, positive labels, positive priors, etc.
- Return type
list[
InstanceData
]
- get_targets(points: List[Tensor], batch_gt_instances: List[InstanceData]) Tuple[List[Tensor], List[Tensor], List[Tensor], List[Tensor]] [source]¶
Compute regression, classification and centerness targets for points in multiple images.
- Parameters
points (list[Tensor]) – Points of each fpn level, each has shape (num_points, 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.
- Returns
Targets of each level.
concat_lvl_labels (list[Tensor]): Labels of each level.
concat_lvl_bbox_targets (list[Tensor]): BBox targets of each level.
pos_inds_list (list[Tensor]): pos_inds of each image.
pos_gt_inds_list (List[Tensor]): pos_gt_inds of each image.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], centernesses: List[Tensor], param_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes.
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
centernesses (list[Tensor]) – centerness for each scale level, each is a 4D-tensor, the channel number is num_points * 1.
param_preds (List[Tensor]) – param_pred for each scale level, each is a 4D-tensor, the channel number is num_params.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- predict_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, param_preds: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
Note: When score_factors is not None, the cls_scores are usually multiplied by it then obtain the real score used in NMS, such as CenterNess in FCOS, IoU branch in ATSS.
- Parameters
cls_scores (list[Tensor]) – Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W).
score_factors (list[Tensor], optional) – Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None.
param_preds (list[Tensor], optional) – Params for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * num_params, H, W)
batch_img_metas (list[dict], Optional) – Batch image meta info. Defaults to None.
cfg (ConfigDict, optional) – Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
with_nms (bool) – If True, do nms before return boxes. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.CondInstMaskHead(mask_feature_head: Union[ConfigDict, dict], num_layers: int = 3, feat_channels: int = 8, mask_out_stride: int = 4, size_of_interest: int = 8, max_masks_to_train: int = -1, topk_masks_per_img: int = -1, loss_mask: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
CondInst mask head used in https://arxiv.org/abs/1904.02689.
This head outputs the mask for CondInst.
- Parameters
mask_feature_head (dict) – Config of CondInstMaskFeatHead.
num_layers (int) – Number of dynamic conv layers.
feat_channels (int) – Number of channels in the dynamic conv.
mask_out_stride (int) – The stride of the mask feat.
size_of_interest (int) – The size of the region used in rel coord.
max_masks_to_train (int) – Maximum number of masks to train for each image.
loss_segm (
ConfigDict
or dict, optional) – Config of segmentation loss.train_cfg (
ConfigDict
or dict, optional) – Training config of head.test_cfg (
ConfigDict
or dict, optional) – Testing config of head.
- dynamic_conv_forward(features: Tensor, weights: List[Tensor], biases: List[Tensor], num_insts: int) Tensor [source]¶
Dynamic forward, each layer follow a relu.
- forward(x: tuple, positive_infos: List[InstanceData]) tuple [source]¶
Forward feature from the upstream network to get prototypes and linearly combine the prototypes, using masks coefficients, into instance masks. Finally, crop the instance masks with given bboxes.
- Parameters
x (Tuple[Tensor]) – Feature from the upstream network, which is a 4D-tensor.
positive_infos (List[:obj:
InstanceData
]) – Positive information that calculate from detect head.
- Returns
Predicted instance segmentation masks
- Return type
tuple
- forward_single(mask_feat: Tensor, positive_info: InstanceData) Tensor [source]¶
Forward features of a each image.
- loss_by_feat(mask_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], positive_infos: List[InstanceData], **kwargs) dict [source]¶
Calculate the loss based on the features extracted by the mask head.
- Parameters
mask_preds (list[Tensor]) – List of predicted masks, each has shape (num_classes, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,masks
, andlabels
attributes.batch_img_metas (list[dict]) – Meta information of multiple images.
positive_infos (List[:obj:
InstanceData
]) – Information of positive samples of each image that are assigned in detection head.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- parse_dynamic_params(params: Tensor) Tuple[List[Tensor], List[Tensor]] [source]¶
Parse the dynamic params for dynamic conv.
- predict_by_feat(mask_preds: List[Tensor], results_list: List[InstanceData], batch_img_metas: List[dict], rescale: bool = True, **kwargs) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into mask results.
- Parameters
mask_preds (list[Tensor]) – Predicted prototypes with shape (num_classes, H, W).
results_list (List[:obj:
InstanceData
]) – BBoxHead results.batch_img_metas (list[dict]) – Meta information of all images.
rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
Processed results of multiple images.Each
InstanceData
usually contains following keys.scores (Tensor): Classification scores, has shape (num_instance,).
labels (Tensor): Has shape (num_instances,).
masks (Tensor): Processed mask results, has shape (num_instances, h, w).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.ConditionalDETRHead(num_classes: int, embed_dims: int = 256, num_reg_fcs: int = 2, sync_cls_avg_factor: bool = False, loss_cls: Union[ConfigDict, dict] = {'bg_cls_weight': 0.1, 'class_weight': 1.0, 'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': False}, loss_bbox: Union[ConfigDict, dict] = {'loss_weight': 5.0, 'type': 'L1Loss'}, loss_iou: Union[ConfigDict, dict] = {'loss_weight': 2.0, 'type': 'GIoULoss'}, train_cfg: Union[ConfigDict, dict] = {'assigner': {'match_costs': [{'type': 'ClassificationCost', 'weight': 1.0}, {'type': 'BBoxL1Cost', 'weight': 5.0, 'box_format': 'xywh'}, {'type': 'IoUCost', 'iou_mode': 'giou', 'weight': 2.0}], 'type': 'HungarianAssigner'}}, test_cfg: Union[ConfigDict, dict] = {'max_per_img': 100}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Head of Conditional DETR. Conditional DETR: Conditional DETR for Fast Training Convergence. More details can be found in the `paper.
<https://arxiv.org/abs/2108.06152>`_ .
- forward(hidden_states: Tensor, references: Tensor) Tuple[Tensor, Tensor] [source]¶
“Forward function.
- Parameters
hidden_states (Tensor) – Features from transformer decoder. If return_intermediate_dec is True output has shape (num_decoder_layers, bs, num_queries, dim), else has shape (1, bs, num_queries, dim) which only contains the last layer outputs.
references (Tensor) – References from transformer decoder, has shape (bs, num_queries, 2).
- Returns
results of head containing the following tensor.
layers_cls_scores (Tensor): Outputs from the classification head, shape (num_decoder_layers, bs, num_queries, cls_out_channels). Note cls_out_channels should include background.
layers_bbox_preds (Tensor): Sigmoid outputs from the regression head with normalized coordinate format (cx, cy, w, h), has shape (num_decoder_layers, bs, num_queries, 4).
- Return type
tuple[Tensor]
- loss(hidden_states: Tensor, references: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection head on the features of the upstream network.
- Parameters
hidden_states (Tensor) – Features from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, dim).
references (Tensor) – References from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, 2).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_and_predict(hidden_states: Tensor, references: Tensor, batch_data_samples: List[DetDataSample]) Tuple[dict, List[InstanceData]] [source]¶
Perform forward propagation of the head, then calculate loss and predictions from the features and data samples. Over-write because img_metas are needed as inputs for bbox_head.
- Parameters
hidden_states (Tensor) – Features from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, dim).
references (Tensor) – References from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, 2).
batch_data_samples (list[
DetDataSample
]) – Each item contains the meta information of each image and corresponding annotations.
- Returns
The return value is a tuple contains:
losses: (dict[str, Tensor]): A dictionary of loss components.
predictions (list[
InstanceData
]): Detection results of each image after the post process.
- Return type
tuple
- predict(hidden_states: Tensor, references: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[InstanceData] [source]¶
Perform forward propagation of the detection head and predict detection results on the features of the upstream network. Over-write because img_metas are needed as inputs for bbox_head.
- Parameters
hidden_states (Tensor) – Features from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, dim).
references (Tensor) – References from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, 2).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool, optional) – Whether to rescale the results. Defaults to True.
- Returns
InstanceData]: Detection results of each image after the post process.
- Return type
list[obj
- class mmdet.models.dense_heads.CornerHead(num_classes: int, in_channels: int, num_feat_levels: int = 2, corner_emb_channels: int = 1, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, loss_heatmap: Union[ConfigDict, dict] = {'alpha': 2.0, 'gamma': 4.0, 'loss_weight': 1, 'type': 'GaussianFocalLoss'}, loss_embedding: Union[ConfigDict, dict] = {'pull_weight': 0.25, 'push_weight': 0.25, 'type': 'AssociativeEmbeddingLoss'}, loss_offset: Union[ConfigDict, dict] = {'beta': 1.0, 'loss_weight': 1, 'type': 'SmoothL1Loss'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Head of CornerNet: Detecting Objects as Paired Keypoints.
Code is modified from the official github repo .
More details can be found in the paper .
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
num_feat_levels (int) – Levels of feature from the previous module. 2 for HourglassNet-104 and 1 for HourglassNet-52. Because HourglassNet-104 outputs the final feature and intermediate supervision feature and HourglassNet-52 only outputs the final feature. Defaults to 2.
corner_emb_channels (int) – Channel of embedding vector. Defaults to 1.
train_cfg (
ConfigDict
or dict, optional) – Training config. Useless in CornerHead, but we keep this variable for SingleStageDetector.test_cfg (
ConfigDict
or dict, optional) – Testing config of CornerHead.loss_heatmap (
ConfigDict
or dict) – Config of corner heatmap loss. Defaults to GaussianFocalLoss.loss_embedding (
ConfigDict
or dict) – Config of corner embedding loss. Defaults to AssociativeEmbeddingLoss.loss_offset (
ConfigDict
or dict) – Config of corner offset loss. Defaults to SmoothL1Loss.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization.
- forward(feats: Tuple[Tensor]) tuple [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
Usually a tuple of corner heatmaps, offset heatmaps and embedding heatmaps.
tl_heats (list[Tensor]): Top-left corner heatmaps for all levels, each is a 4D-tensor, the channels number is num_classes.
br_heats (list[Tensor]): Bottom-right corner heatmaps for all levels, each is a 4D-tensor, the channels number is num_classes.
tl_embs (list[Tensor] | list[None]): Top-left embedding heatmaps for all levels, each is a 4D-tensor or None. If not None, the channels number is corner_emb_channels.
br_embs (list[Tensor] | list[None]): Bottom-right embedding heatmaps for all levels, each is a 4D-tensor or None. If not None, the channels number is corner_emb_channels.
tl_offs (list[Tensor]): Top-left offset heatmaps for all levels, each is a 4D-tensor. The channels number is corner_offset_channels.
br_offs (list[Tensor]): Bottom-right offset heatmaps for all levels, each is a 4D-tensor. The channels number is corner_offset_channels.
- Return type
tuple
- forward_single(x: Tensor, lvl_ind: int, return_pool: bool = False) List[Tensor] [source]¶
Forward feature of a single level.
- Parameters
x (Tensor) – Feature of a single level.
lvl_ind (int) – Level index of current feature.
return_pool (bool) – Return corner pool feature or not. Defaults to False.
- Returns
A tuple of CornerHead’s output for current feature level. Containing the following Tensors:
tl_heat (Tensor): Predicted top-left corner heatmap.
br_heat (Tensor): Predicted bottom-right corner heatmap.
tl_emb (Tensor | None): Predicted top-left embedding heatmap. None for self.with_corner_emb == False.
br_emb (Tensor | None): Predicted bottom-right embedding heatmap. None for self.with_corner_emb == False.
tl_off (Tensor): Predicted top-left offset heatmap.
br_off (Tensor): Predicted bottom-right offset heatmap.
tl_pool (Tensor): Top-left corner pool feature. Not must have.
br_pool (Tensor): Bottom-right corner pool feature. Not must have.
- Return type
tuple[Tensor]
- get_targets(gt_bboxes: List[Tensor], gt_labels: List[Tensor], feat_shape: Sequence[int], img_shape: Sequence[int], with_corner_emb: bool = False, with_guiding_shift: bool = False, with_centripetal_shift: bool = False) dict [source]¶
Generate corner targets.
Including corner heatmap, corner offset.
Optional: corner embedding, corner guiding shift, centripetal shift.
For CornerNet, we generate corner heatmap, corner offset and corner embedding from this function.
For CentripetalNet, we generate corner heatmap, corner offset, guiding shift and centripetal shift from this function.
- Parameters
gt_bboxes (list[Tensor]) – Ground truth bboxes of each image, each has shape (num_gt, 4).
gt_labels (list[Tensor]) – Ground truth labels of each box, each has shape (num_gt, ).
feat_shape (Sequence[int]) – Shape of output feature, [batch, channel, height, width].
img_shape (Sequence[int]) – Shape of input image, [height, width, channel].
with_corner_emb (bool) – Generate corner embedding target or not. Defaults to False.
with_guiding_shift (bool) – Generate guiding shift target or not. Defaults to False.
with_centripetal_shift (bool) – Generate centripetal shift target or not. Defaults to False.
- Returns
Ground truth of corner heatmap, corner offset, corner embedding, guiding shift and centripetal shift. Containing the following keys:
topleft_heatmap (Tensor): Ground truth top-left corner heatmap.
bottomright_heatmap (Tensor): Ground truth bottom-right corner heatmap.
topleft_offset (Tensor): Ground truth top-left corner offset.
bottomright_offset (Tensor): Ground truth bottom-right corner offset.
corner_embedding (list[list[list[int]]]): Ground truth corner embedding. Not must have.
topleft_guiding_shift (Tensor): Ground truth top-left corner guiding shift. Not must have.
bottomright_guiding_shift (Tensor): Ground truth bottom-right corner guiding shift. Not must have.
topleft_centripetal_shift (Tensor): Ground truth top-left corner centripetal shift. Not must have.
bottomright_centripetal_shift (Tensor): Ground truth bottom-right corner centripetal shift. Not must have.
- Return type
dict
- loss_by_feat(tl_heats: List[Tensor], br_heats: List[Tensor], tl_embs: List[Tensor], br_embs: List[Tensor], tl_offs: List[Tensor], br_offs: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
tl_heats (list[Tensor]) – Top-left corner heatmaps for each level with shape (N, num_classes, H, W).
br_heats (list[Tensor]) – Bottom-right corner heatmaps for each level with shape (N, num_classes, H, W).
tl_embs (list[Tensor]) – Top-left corner embeddings for each level with shape (N, corner_emb_channels, H, W).
br_embs (list[Tensor]) – Bottom-right corner embeddings for each level with shape (N, corner_emb_channels, H, W).
tl_offs (list[Tensor]) – Top-left corner offsets for each level with shape (N, corner_offset_channels, H, W).
br_offs (list[Tensor]) – Bottom-right corner offsets for each level with shape (N, corner_offset_channels, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Specify which bounding boxes can be ignored when computing the loss.
- Returns
A dictionary of loss components. Containing the following losses:
det_loss (list[Tensor]): Corner keypoint losses of all feature levels.
pull_loss (list[Tensor]): Part one of AssociativeEmbedding losses of all feature levels.
push_loss (list[Tensor]): Part two of AssociativeEmbedding losses of all feature levels.
off_loss (list[Tensor]): Corner offset losses of all feature levels.
- Return type
dict[str, Tensor]
- loss_by_feat_single(tl_hmp: Tensor, br_hmp: Tensor, tl_emb: Optional[Tensor], br_emb: Optional[Tensor], tl_off: Tensor, br_off: Tensor, targets: dict) Tuple[Tensor, ...] [source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
tl_hmp (Tensor) – Top-left corner heatmap for current level with shape (N, num_classes, H, W).
br_hmp (Tensor) – Bottom-right corner heatmap for current level with shape (N, num_classes, H, W).
tl_emb (Tensor, optional) – Top-left corner embedding for current level with shape (N, corner_emb_channels, H, W).
br_emb (Tensor, optional) – Bottom-right corner embedding for current level with shape (N, corner_emb_channels, H, W).
tl_off (Tensor) – Top-left corner offset for current level with shape (N, corner_offset_channels, H, W).
br_off (Tensor) – Bottom-right corner offset for current level with shape (N, corner_offset_channels, H, W).
targets (dict) – Corner target generated by get_targets.
- Returns
Losses of the head’s different branches containing the following losses:
det_loss (Tensor): Corner keypoint loss.
pull_loss (Tensor): Part one of AssociativeEmbedding loss.
push_loss (Tensor): Part two of AssociativeEmbedding loss.
off_loss (Tensor): Corner offset loss.
- Return type
tuple[torch.Tensor]
- predict_by_feat(tl_heats: List[Tensor], br_heats: List[Tensor], tl_embs: List[Tensor], br_embs: List[Tensor], tl_offs: List[Tensor], br_offs: List[Tensor], batch_img_metas: Optional[List[dict]] = None, rescale: bool = False, with_nms: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
- Parameters
tl_heats (list[Tensor]) – Top-left corner heatmaps for each level with shape (N, num_classes, H, W).
br_heats (list[Tensor]) – Bottom-right corner heatmaps for each level with shape (N, num_classes, H, W).
tl_embs (list[Tensor]) – Top-left corner embeddings for each level with shape (N, corner_emb_channels, H, W).
br_embs (list[Tensor]) – Bottom-right corner embeddings for each level with shape (N, corner_emb_channels, H, W).
tl_offs (list[Tensor]) – Top-left corner offsets for each level with shape (N, corner_offset_channels, H, W).
br_offs (list[Tensor]) – Bottom-right corner offsets for each level with shape (N, corner_offset_channels, H, W).
batch_img_metas (list[dict], optional) – Batch image meta info. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
with_nms (bool) – If True, do nms before return boxes. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.DABDETRHead(num_classes: int, embed_dims: int = 256, num_reg_fcs: int = 2, sync_cls_avg_factor: bool = False, loss_cls: Union[ConfigDict, dict] = {'bg_cls_weight': 0.1, 'class_weight': 1.0, 'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': False}, loss_bbox: Union[ConfigDict, dict] = {'loss_weight': 5.0, 'type': 'L1Loss'}, loss_iou: Union[ConfigDict, dict] = {'loss_weight': 2.0, 'type': 'GIoULoss'}, train_cfg: Union[ConfigDict, dict] = {'assigner': {'match_costs': [{'type': 'ClassificationCost', 'weight': 1.0}, {'type': 'BBoxL1Cost', 'weight': 5.0, 'box_format': 'xywh'}, {'type': 'IoUCost', 'iou_mode': 'giou', 'weight': 2.0}], 'type': 'HungarianAssigner'}}, test_cfg: Union[ConfigDict, dict] = {'max_per_img': 100}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Head of DAB-DETR. DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR.
More details can be found in the paper .
- forward(hidden_states: Tensor, references: Tensor) Tuple[Tensor, Tensor] [source]¶
“Forward function.
- Parameters
hidden_states (Tensor) – Features from transformer decoder. If return_intermediate_dec is True output has shape (num_decoder_layers, bs, num_queries, dim), else has shape (1, bs, num_queries, dim) which only contains the last layer outputs.
references (Tensor) – References from transformer decoder. If return_intermediate_dec is True output has shape (num_decoder_layers, bs, num_queries, 2/4), else has shape (1, bs, num_queries, 2/4) which only contains the last layer reference.
- Returns
results of head containing the following tensor.
layers_cls_scores (Tensor): Outputs from the classification head, shape (num_decoder_layers, bs, num_queries, cls_out_channels). Note cls_out_channels should include background.
layers_bbox_preds (Tensor): Sigmoid outputs from the regression head with normalized coordinate format (cx, cy, w, h), has shape (num_decoder_layers, bs, num_queries, 4).
- Return type
tuple[Tensor]
- predict(hidden_states: Tensor, references: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[InstanceData] [source]¶
Perform forward propagation of the detection head and predict detection results on the features of the upstream network. Over-write because img_metas are needed as inputs for bbox_head.
- Parameters
hidden_states (Tensor) – Feature from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, dim).
references (Tensor) – references from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, 2/4).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool, optional) – Whether to rescale the results. Defaults to True.
- Returns
InstanceData]: Detection results of each image after the post process.
- Return type
list[obj
- class mmdet.models.dense_heads.DDODHead(num_classes: int, in_channels: int, stacked_convs: int = 4, conv_cfg: Optional[Union[ConfigDict, dict]] = None, use_dcn: bool = True, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 32, 'requires_grad': True, 'type': 'GN'}, loss_iou: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, **kwargs)[source]¶
Detection Head of DDOD.
DDOD head decomposes conjunctions lying in most current one-stage detectors via label assignment disentanglement, spatial feature disentanglement, and pyramid supervision disentanglement.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
stacked_convs (int) – The number of stacked Conv. Defaults to 4.
conv_cfg (
ConfigDict
or dict, optional) – Config dict for convolution layer. Defaults to None.use_dcn (bool) – Use dcn, Same as ATSS when False. Defaults to True.
norm_cfg (
ConfigDict
or dict) – Normal config of ddod head. Defaults to dict(type=’GN’, num_groups=32, requires_grad=True).loss_iou (
ConfigDict
or dict) – Config of IoU loss. Defaults to dict(type=’CrossEntropyLoss’, use_sigmoid=True, loss_weight=1.0).
- calc_reweight_factor(labels_list: List[Tensor]) List[float] [source]¶
Compute reweight_factor for regression and classification loss.
- forward(x: Tuple[Tensor]) Tuple[List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of classification scores, bbox predictions, and iou predictions.
cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
iou_preds (list[Tensor]): IoU scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 1.
- Return type
tuple
- forward_single(x: Tensor, scale: Scale) Sequence[Tensor] [source]¶
Forward feature of a single scale level.
- Parameters
x (Tensor) – Features of a single scale level.
( (scale) – obj: mmcv.cnn.Scale): Learnable scale module to resize the bbox prediction.
- Returns
cls_score (Tensor): Cls scores for a single scale level the channels number is num_base_priors * num_classes.
bbox_pred (Tensor): Box energies / deltas for a single scale level, the channels number is num_base_priors * 4.
iou_pred (Tensor): Iou for a single scale level, the channel number is (N, num_base_priors * 1, H, W).
- Return type
tuple
- get_cls_targets(anchor_list: List[Tensor], valid_flag_list: List[Tensor], num_level_anchors_list: List[int], cls_score_list: List[Tensor], bbox_pred_list: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs: bool = True) tuple [source]¶
Get cls targets for DDOD head.
This method is almost the same as AnchorHead.get_targets(). Besides returning the targets as the parent method does, it also returns the anchors as the first element of the returned tuple.
- Parameters
anchor_list (list[Tensor]) – anchors of each image.
valid_flag_list (list[Tensor]) – Valid flags of each image.
num_level_anchors_list (list[Tensor]) – Number of anchors of each scale level of all image.
cls_score_list (list[Tensor]) – Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_pred_list (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.unmap_outputs (bool) – Whether to map outputs back to the original set of anchors.
- Returns
A tuple of cls targets components.
- Return type
tuple[Tensor]
- get_num_level_anchors_inside(num_level_anchors: List[int], inside_flags: Tensor) List[int] [source]¶
Get the anchors of each scale level inside.
- Parameters
num_level_anchors (list[int]) – Number of anchors of each scale level.
inside_flags (Tensor) – Multi level inside flags of the image, which are concatenated into a single tensor of shape (num_base_priors,).
- Returns
Number of anchors of each scale level inside.
- Return type
list[int]
- get_reg_targets(anchor_list: List[Tensor], valid_flag_list: List[Tensor], num_level_anchors_list: List[int], cls_score_list: List[Tensor], bbox_pred_list: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs: bool = True) tuple [source]¶
Get reg targets for DDOD head.
This method is almost the same as AnchorHead.get_targets() when is_cls_assigner is False. Besides returning the targets as the parent method does, it also returns the anchors as the first element of the returned tuple.
- Parameters
anchor_list (list[Tensor]) – anchors of each image.
valid_flag_list (list[Tensor]) – Valid flags of each image.
num_level_anchors_list (list[Tensor]) – Number of anchors of each scale level of all image.
cls_score_list (list[Tensor]) – Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_pred_list (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.unmap_outputs (bool) – Whether to map outputs back to the original set of anchors.
- Returns
A tuple of reg targets components.
- Return type
tuple[Tensor]
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], iou_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_base_priors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_base_priors * 4, H, W)
iou_preds (list[Tensor]) – Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_cls_by_feat_single(cls_score: Tensor, labels: Tensor, label_weights: Tensor, reweight_factor: List[float], avg_factor: float) Tuple[Tensor] [source]¶
Compute cls loss of a single scale level.
- Parameters
cls_score (Tensor) – Box scores for each scale level Has shape (N, num_base_priors * num_classes, H, W).
labels (Tensor) – Labels of each anchors with shape (N, num_total_anchors).
label_weights (Tensor) – Label weights of each anchor with shape (N, num_total_anchors)
reweight_factor (List[float]) – Reweight factor for cls and reg loss.
avg_factor (float) – Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using PseudoSampler, avg_factor is usually equal to the number of positive priors.
- Returns
A tuple of loss components.
- Return type
Tuple[Tensor]
- loss_reg_by_feat_single(anchors: Tensor, bbox_pred: Tensor, iou_pred: Tensor, labels, label_weights: Tensor, bbox_targets: Tensor, bbox_weights: Tensor, reweight_factor: List[float], avg_factor: float) Tuple[Tensor, Tensor] [source]¶
Compute reg loss of a single scale level based on the features extracted by the detection head.
- Parameters
anchors (Tensor) – Box reference for each scale level with shape (N, num_total_anchors, 4).
bbox_pred (Tensor) – Box energies / deltas for each scale level with shape (N, num_base_priors * 4, H, W).
iou_pred (Tensor) – Iou for a single scale level, the channel number is (N, num_base_priors * 1, H, W).
labels (Tensor) – Labels of each anchors with shape (N, num_total_anchors).
label_weights (Tensor) – Label weights of each anchor with shape (N, num_total_anchors)
bbox_targets (Tensor) – BBox regression targets of each anchor with shape (N, num_total_anchors, 4).
bbox_weights (Tensor) – BBox weights of all anchors in the image with shape (N, 4)
reweight_factor (List[float]) – Reweight factor for cls and reg loss.
avg_factor (float) – Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using PseudoSampler, avg_factor is usually equal to the number of positive priors.
- Returns
A tuple of loss components.
- Return type
Tuple[Tensor, Tensor]
- process_predictions_and_anchors(anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) tuple [source]¶
Compute common vars for regression and classification targets.
- Parameters
anchor_list (List[List[Tensor]]) – anchors of each image.
valid_flag_list (List[List[Tensor]]) – Valid flags of each image.
cls_scores (List[Tensor]) – Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_preds (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A tuple of common loss vars.
- Return type
tuple[Tensor]
- class mmdet.models.dense_heads.DDQDETRHead(*args, aux_num_pos=4, **kwargs)[source]¶
- Head of DDQDETR: Dense Distinct Query for
End-to-End Object Detection.
- Code is modified from the `official github repo
- More details can be found in the `paper
- Parameters
aux_num_pos (int) – Number of positive targets assigned to a perdicted object. Defaults to 4.
- forward(hidden_states: Tensor, references: List[Tensor]) Tuple[Tensor] [source]¶
Forward function.
- Parameters
hidden_states (Tensor) – Hidden states output from each decoder layer, has shape (num_decoder_layers, bs, num_queries_total, dim), where num_queries_total is the sum of num_denoising_queries, num_queries and num_dense_queries when self.training is True, else num_queries.
references (list[Tensor]) – List of the reference from the decoder. The first reference is the init_reference (initial) and the other num_decoder_layers(6) references are inter_references (intermediate). Each reference has shape (bs, num_queries_total, 4) with the last dimension arranged as (cx, cy, w, h).
- Returns
results of head containing the following tensors.
all_layers_outputs_classes (Tensor): Outputs from the classification head, has shape (num_decoder_layers, bs, num_queries_total, cls_out_channels).
all_layers_outputs_coords (Tensor): Sigmoid outputs from the regression head with normalized coordinate format (cx, cy, w, h), has shape (num_decoder_layers, bs, num_queries_total, 4) with the last dimension arranged as (cx, cy, w, h).
- Return type
tuple[Tensor]
- loss(hidden_states: Tensor, references: List[Tensor], enc_outputs_class: Tensor, enc_outputs_coord: Tensor, batch_data_samples: List[DetDataSample], dn_meta: Dict[str, int], aux_enc_outputs_class=None, aux_enc_outputs_coord=None) dict [source]¶
Perform forward propagation and loss calculation of the detection head on the queries of the upstream network.
- Parameters
hidden_states (Tensor) – Hidden states output from each decoder layer, has shape (num_decoder_layers, bs, num_queries_total, dim), where num_queries_total is the sum of num_denoising_queries, num_queries and num_dense_queries when self.training is True, else num_queries.
references (list[Tensor]) – List of the reference from the decoder. The first reference is the init_reference (initial) and the other num_decoder_layers(6) references are inter_references (intermediate). Each reference has shape (bs, num_queries_total, 4) with the last dimension arranged as (cx, cy, w, h).
enc_outputs_class (Tensor) – The top k classification score of each point on encoder feature map, has shape (bs, num_queries, cls_out_channels).
enc_outputs_coord (Tensor) – The proposal generated from points with top k score, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
batch_data_samples (list[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.dn_meta (Dict[str, int]) – The dictionary saves information about group collation, including ‘num_denoising_queries’ and ‘num_denoising_groups’. It will be used for split outputs of denoising and matching parts and loss calculation.
aux_enc_outputs_class (Tensor) – The dense_topk classification score of each point on encoder feature map, has shape (bs, num_dense_queries, cls_out_channels). It is None when self.training is False.
aux_enc_outputs_coord (Tensor) – The proposal generated from points with dense_topk score, has shape (bs, num_dense_queries, 4) with the last dimension arranged as (cx, cy, w, h). It is None when self.training is False.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_by_feat(all_layers_cls_scores: Tensor, all_layers_bbox_preds: Tensor, enc_cls_scores: Tensor, enc_bbox_preds: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], dn_meta: Dict[str, int], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Loss function.
- Parameters
all_layers_cls_scores (Tensor) – Classification scores of all decoder layers, has shape (num_decoder_layers, bs, num_queries_total, cls_out_channels).
all_layers_bbox_preds (Tensor) – Bbox coordinates of all decoder layers. Each has shape (num_decoder_layers, bs, num_queries_total, 4) with normalized coordinate format (cx, cy, w, h).
enc_cls_scores (Tensor) – The top k score of each point on encoder feature map, has shape (bs, num_queries, cls_out_channels).
enc_bbox_preds (Tensor) – The proposal generated from points with top k score, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
dn_meta (Dict[str, int]) – The dictionary saves information about group collation, including ‘num_denoising_queries’ and ‘num_denoising_groups’. It will be used for split outputs of denoising and matching parts and loss calculation.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_for_distinct_queries(all_layers_cls_scores: Tensor, all_layers_bbox_preds: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Calculate the loss of distinct queries, that is, excluding denoising and dense queries. Only select the distinct queries in decoder for loss.
- Parameters
all_layers_cls_scores (Tensor) – Classification scores of all decoder layers, has shape (num_decoder_layers, bs, num_queries, cls_out_channels).
all_layers_bbox_preds (Tensor) – Bbox coordinates of all decoder layers. It has shape (num_decoder_layers, bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image,
e.g. –
size (image) –
factor (scaling) –
etc. –
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- predict_by_feat(layer_cls_scores: Tensor, layer_bbox_preds: Tensor, batch_img_metas: List[dict], rescale: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
- Parameters
layer_cls_scores (Tensor) – Classification scores of all decoder layers, has shape (num_decoder_layers, bs, num_queries, cls_out_channels).
layer_bbox_preds (Tensor) – Bbox coordinates of all decoder layers. Each has shape (num_decoder_layers, bs, num_queries, 4) with normalized coordinate format (cx, cy, w, h).
batch_img_metas (list[dict]) – Meta information of each image.
rescale (bool, optional) – If True, return boxes in original image space. Default False.
- Returns
InstanceData]: Detection results of each image after the post process.
- Return type
list[obj
- class mmdet.models.dense_heads.DETRHead(num_classes: int, embed_dims: int = 256, num_reg_fcs: int = 2, sync_cls_avg_factor: bool = False, loss_cls: Union[ConfigDict, dict] = {'bg_cls_weight': 0.1, 'class_weight': 1.0, 'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': False}, loss_bbox: Union[ConfigDict, dict] = {'loss_weight': 5.0, 'type': 'L1Loss'}, loss_iou: Union[ConfigDict, dict] = {'loss_weight': 2.0, 'type': 'GIoULoss'}, train_cfg: Union[ConfigDict, dict] = {'assigner': {'match_costs': [{'type': 'ClassificationCost', 'weight': 1.0}, {'type': 'BBoxL1Cost', 'weight': 5.0, 'box_format': 'xywh'}, {'type': 'IoUCost', 'iou_mode': 'giou', 'weight': 2.0}], 'type': 'HungarianAssigner'}}, test_cfg: Union[ConfigDict, dict] = {'max_per_img': 100}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Head of DETR. DETR:End-to-End Object Detection with Transformers.
More details can be found in the paper .
- Parameters
num_classes (int) – Number of categories excluding the background.
embed_dims (int) – The dims of Transformer embedding.
num_reg_fcs (int) – Number of fully-connected layers used in FFN, which is then used for the regression head. Defaults to 2.
sync_cls_avg_factor (bool) – Whether to sync the avg_factor of all ranks. Default to False.
loss_cls (
ConfigDict
or dict) – Config of the classification loss. Defaults to CrossEntropyLoss.loss_bbox (
ConfigDict
or dict) – Config of the regression bbox loss. Defaults to L1Loss.loss_iou (
ConfigDict
or dict) – Config of the regression iou loss. Defaults to GIoULoss.train_cfg (
ConfigDict
or dict) – Training config of transformer head.test_cfg (
ConfigDict
or dict) – Testing config of transformer head.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- forward(hidden_states: Tensor) Tuple[Tensor] [source]¶
“Forward function.
- Parameters
hidden_states (Tensor) – Features from transformer decoder. If return_intermediate_dec in detr.py is True output has shape (num_decoder_layers, bs, num_queries, dim), else has shape (1, bs, num_queries, dim) which only contains the last layer outputs.
- Returns
results of head containing the following tensor.
layers_cls_scores (Tensor): Outputs from the classification head, shape (num_decoder_layers, bs, num_queries, cls_out_channels). Note cls_out_channels should include background.
layers_bbox_preds (Tensor): Sigmoid outputs from the regression head with normalized coordinate format (cx, cy, w, h), has shape (num_decoder_layers, bs, num_queries, 4).
- Return type
tuple[Tensor]
- get_targets(cls_scores_list: List[Tensor], bbox_preds_list: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict]) tuple [source]¶
Compute regression and classification targets for a batch image.
Outputs from a single decoder layer of a single feature level are used.
- Parameters
cls_scores_list (list[Tensor]) – Box score logits from a single decoder layer for each image, has shape [num_queries, cls_out_channels].
bbox_preds_list (list[Tensor]) – Sigmoid outputs from a single decoder layer for each image, with normalized coordinate (cx, cy, w, h) and shape [num_queries, 4].
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
- Returns
a tuple containing the following targets.
labels_list (list[Tensor]): Labels for all images.
label_weights_list (list[Tensor]): Label weights for all images.
bbox_targets_list (list[Tensor]): BBox targets for all images.
bbox_weights_list (list[Tensor]): BBox weights for all images.
num_total_pos (int): Number of positive samples in all images.
num_total_neg (int): Number of negative samples in all images.
- Return type
tuple
- loss(hidden_states: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection head on the features of the upstream network.
- Parameters
hidden_states (Tensor) – Feature from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, cls_out_channels) or (num_decoder_layers, num_queries, bs, cls_out_channels).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_and_predict(hidden_states: Tuple[Tensor], batch_data_samples: List[DetDataSample]) Tuple[dict, List[InstanceData]] [source]¶
Perform forward propagation of the head, then calculate loss and predictions from the features and data samples. Over-write because img_metas are needed as inputs for bbox_head.
- Parameters
hidden_states (tuple[Tensor]) – Feature from the transformer decoder, has shape (num_decoder_layers, bs, num_queries, dim).
batch_data_samples (list[
DetDataSample
]) – Each item contains the meta information of each image and corresponding annotations.
- Returns
the return value is a tuple contains:
losses: (dict[str, Tensor]): A dictionary of loss components.
predictions (list[
InstanceData
]): Detection results of each image after the post process.
- Return type
tuple
- loss_by_feat(all_layers_cls_scores: Tensor, all_layers_bbox_preds: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
“Loss function.
Only outputs from the last feature level are used for computing losses by default.
- Parameters
all_layers_cls_scores (Tensor) – Classification outputs of each decoder layers. Each is a 4D-tensor, has shape (num_decoder_layers, bs, num_queries, cls_out_channels).
all_layers_bbox_preds (Tensor) – Sigmoid regression outputs of each decoder layers. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries, 4).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_by_feat_single(cls_scores: Tensor, bbox_preds: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict]) Tuple[Tensor] [source]¶
Loss function for outputs from a single decoder layer of a single feature level.
- Parameters
cls_scores (Tensor) – Box score logits from a single decoder layer for all images, has shape (bs, num_queries, cls_out_channels).
bbox_preds (Tensor) – Sigmoid outputs from a single decoder layer for all images, with normalized coordinate (cx, cy, w, h) and shape (bs, num_queries, 4).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
- Returns
A tuple including loss_cls, loss_box and loss_iou.
- Return type
Tuple[Tensor]
- predict(hidden_states: Tuple[Tensor], batch_data_samples: List[DetDataSample], rescale: bool = True) List[InstanceData] [source]¶
Perform forward propagation of the detection head and predict detection results on the features of the upstream network. Over-write because img_metas are needed as inputs for bbox_head.
- Parameters
hidden_states (tuple[Tensor]) – Multi-level features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool, optional) – Whether to rescale the results. Defaults to True.
- Returns
InstanceData]: Detection results of each image after the post process.
- Return type
list[obj
- predict_by_feat(layer_cls_scores: Tensor, layer_bbox_preds: Tensor, batch_img_metas: List[dict], rescale: bool = True) List[InstanceData] [source]¶
Transform network outputs for a batch into bbox predictions.
- Parameters
layer_cls_scores (Tensor) – Classification outputs of the last or all decoder layer. Each is a 4D-tensor, has shape (num_decoder_layers, bs, num_queries, cls_out_channels).
layer_bbox_preds (Tensor) – Sigmoid regression outputs of the last or all decoder layer. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries, 4).
batch_img_metas (list[dict]) – Meta information of each image.
rescale (bool, optional) – If True, return boxes in original image space. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.DINOHead(*args, share_pred_layer: bool = False, num_pred_layer: int = 6, as_two_stage: bool = False, **kwargs)[source]¶
Head of the DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
Code is modified from the official github repo.
More details can be found in the paper .
- get_dn_targets(batch_gt_instances: List[InstanceData], batch_img_metas: dict, dn_meta: Dict[str, int]) tuple [source]¶
Get targets in denoising part for a batch of images.
- Parameters
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
dn_meta (Dict[str, int]) – The dictionary saves information about group collation, including ‘num_denoising_queries’ and ‘num_denoising_groups’. It will be used for split outputs of denoising and matching parts and loss calculation.
- Returns
a tuple containing the following targets.
labels_list (list[Tensor]): Labels for all images.
label_weights_list (list[Tensor]): Label weights for all images.
bbox_targets_list (list[Tensor]): BBox targets for all images.
bbox_weights_list (list[Tensor]): BBox weights for all images.
num_total_pos (int): Number of positive samples in all images.
num_total_neg (int): Number of negative samples in all images.
- Return type
tuple
- loss(hidden_states: Tensor, references: List[Tensor], enc_outputs_class: Tensor, enc_outputs_coord: Tensor, batch_data_samples: List[DetDataSample], dn_meta: Dict[str, int]) dict [source]¶
Perform forward propagation and loss calculation of the detection head on the queries of the upstream network.
- Parameters
hidden_states (Tensor) – Hidden states output from each decoder layer, has shape (num_decoder_layers, bs, num_queries_total, dim), where num_queries_total is the sum of num_denoising_queries and num_matching_queries when self.training is True, else num_matching_queries.
references (list[Tensor]) – List of the reference from the decoder. The first reference is the init_reference (initial) and the other num_decoder_layers(6) references are inter_references (intermediate). The init_reference has shape (bs, num_queries_total, 4) and each inter_reference has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
enc_outputs_class (Tensor) – The score of each point on encode feature map, has shape (bs, num_feat_points, cls_out_channels).
enc_outputs_coord (Tensor) – The proposal generate from the encode feature map, has shape (bs, num_feat_points, 4) with the last dimension arranged as (cx, cy, w, h).
batch_data_samples (list[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.dn_meta (Dict[str, int]) – The dictionary saves information about group collation, including ‘num_denoising_queries’ and ‘num_denoising_groups’. It will be used for split outputs of denoising and matching parts and loss calculation.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_by_feat(all_layers_cls_scores: Tensor, all_layers_bbox_preds: Tensor, enc_cls_scores: Tensor, enc_bbox_preds: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], dn_meta: Dict[str, int], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Loss function.
- Parameters
all_layers_cls_scores (Tensor) – Classification scores of all decoder layers, has shape (num_decoder_layers, bs, num_queries_total, cls_out_channels), where num_queries_total is the sum of num_denoising_queries and num_matching_queries.
all_layers_bbox_preds (Tensor) – Regression outputs of all decoder layers. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and has shape (num_decoder_layers, bs, num_queries_total, 4).
enc_cls_scores (Tensor) – The score of each point on encode feature map, has shape (bs, num_feat_points, cls_out_channels).
enc_bbox_preds (Tensor) – The proposal generate from the encode feature map, has shape (bs, num_feat_points, 4) with the last dimension arranged as (cx, cy, w, h).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
dn_meta (Dict[str, int]) – The dictionary saves information about group collation, including ‘num_denoising_queries’ and ‘num_denoising_groups’. It will be used for split outputs of denoising and matching parts and loss calculation.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_dn(all_layers_denoising_cls_scores: Tensor, all_layers_denoising_bbox_preds: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], dn_meta: Dict[str, int]) Tuple[List[Tensor]] [source]¶
Calculate denoising loss.
- Parameters
all_layers_denoising_cls_scores (Tensor) – Classification scores of all decoder layers in denoising part, has shape ( num_decoder_layers, bs, num_denoising_queries, cls_out_channels).
all_layers_denoising_bbox_preds (Tensor) – Regression outputs of all decoder layers in denoising part. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and has shape (num_decoder_layers, bs, num_denoising_queries, 4).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
dn_meta (Dict[str, int]) – The dictionary saves information about group collation, including ‘num_denoising_queries’ and ‘num_denoising_groups’. It will be used for split outputs of denoising and matching parts and loss calculation.
- Returns
The loss_dn_cls, loss_dn_bbox, and loss_dn_iou of each decoder layers.
- Return type
Tuple[List[Tensor]]
- static split_outputs(all_layers_cls_scores: Tensor, all_layers_bbox_preds: Tensor, dn_meta: Dict[str, int]) Tuple[Tensor] [source]¶
Split outputs of the denoising part and the matching part.
For the total outputs of num_queries_total length, the former num_denoising_queries outputs are from denoising queries, and the rest num_matching_queries ones are from matching queries, where num_queries_total is the sum of num_denoising_queries and num_matching_queries.
- Parameters
all_layers_cls_scores (Tensor) – Classification scores of all decoder layers, has shape (num_decoder_layers, bs, num_queries_total, cls_out_channels).
all_layers_bbox_preds (Tensor) – Regression outputs of all decoder layers. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and has shape (num_decoder_layers, bs, num_queries_total, 4).
dn_meta (Dict[str, int]) – The dictionary saves information about group collation, including ‘num_denoising_queries’ and ‘num_denoising_groups’.
- Returns
a tuple containing the following outputs.
all_layers_matching_cls_scores (Tensor): Classification scores of all decoder layers in matching part, has shape (num_decoder_layers, bs, num_matching_queries, cls_out_channels).
all_layers_matching_bbox_preds (Tensor): Regression outputs of all decoder layers in matching part. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and has shape (num_decoder_layers, bs, num_matching_queries, 4).
all_layers_denoising_cls_scores (Tensor): Classification scores of all decoder layers in denoising part, has shape (num_decoder_layers, bs, num_denoising_queries, cls_out_channels).
all_layers_denoising_bbox_preds (Tensor): Regression outputs of all decoder layers in denoising part. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and has shape (num_decoder_layers, bs, num_denoising_queries, 4).
- Return type
Tuple[Tensor]
- class mmdet.models.dense_heads.DecoupledSOLOHead(*args, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = [{'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01}, {'type': 'Normal', 'std': 0.01, 'bias_prob': 0.01, 'override': {'name': 'conv_mask_list_x'}}, {'type': 'Normal', 'std': 0.01, 'bias_prob': 0.01, 'override': {'name': 'conv_mask_list_y'}}, {'type': 'Normal', 'std': 0.01, 'bias_prob': 0.01, 'override': {'name': 'conv_cls'}}], **kwargs)[source]¶
Decoupled SOLO mask head used in `SOLO: Segmenting Objects by Locations.
<https://arxiv.org/abs/1912.04488>`_
- Parameters
init_cfg (dict or list[dict], optional) – Initialization config dict.
- forward(x: Tuple[Tensor]) Tuple [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of classification scores and mask prediction.
mlvl_mask_preds_x (list[Tensor]): Multi-level mask prediction from x branch. Each element in the list has shape (batch_size, num_grids ,h ,w).
mlvl_mask_preds_y (list[Tensor]): Multi-level mask prediction from y branch. Each element in the list has shape (batch_size, num_grids ,h ,w).
mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids ,num_grids).
- Return type
tuple
- loss_by_feat(mlvl_mask_preds_x: List[Tensor], mlvl_mask_preds_y: List[Tensor], mlvl_cls_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], **kwargs) dict [source]¶
Calculate the loss based on the features extracted by the mask head.
- Parameters
mlvl_mask_preds_x (list[Tensor]) – Multi-level mask prediction from x branch. Each element in the list has shape (batch_size, num_grids ,h ,w).
mlvl_mask_preds_y (list[Tensor]) – Multi-level mask prediction from y branch. Each element in the list has shape (batch_size, num_grids ,h ,w).
mlvl_cls_preds (list[Tensor]) – Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids ,num_grids).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,masks
, andlabels
attributes.batch_img_metas (list[dict]) – Meta information of multiple images.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- predict_by_feat(mlvl_mask_preds_x: List[Tensor], mlvl_mask_preds_y: List[Tensor], mlvl_cls_scores: List[Tensor], batch_img_metas: List[dict], **kwargs) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into mask results.
- Parameters
mlvl_mask_preds_x (list[Tensor]) – Multi-level mask prediction from x branch. Each element in the list has shape (batch_size, num_grids ,h ,w).
mlvl_mask_preds_y (list[Tensor]) – Multi-level mask prediction from y branch. Each element in the list has shape (batch_size, num_grids ,h ,w).
mlvl_cls_scores (list[Tensor]) – Multi-level scores. Each element in the list has shape (batch_size, num_classes ,num_grids ,num_grids).
batch_img_metas (list[dict]) – Meta information of all images.
- Returns
Processed results of multiple images.Each
InstanceData
usually contains following keys.scores (Tensor): Classification scores, has shape (num_instance,).
labels (Tensor): Has shape (num_instances,).
masks (Tensor): Processed mask results, has shape (num_instances, h, w).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.DecoupledSOLOLightHead(*args, dcn_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = [{'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01}, {'type': 'Normal', 'std': 0.01, 'bias_prob': 0.01, 'override': {'name': 'conv_mask_list_x'}}, {'type': 'Normal', 'std': 0.01, 'bias_prob': 0.01, 'override': {'name': 'conv_mask_list_y'}}, {'type': 'Normal', 'std': 0.01, 'bias_prob': 0.01, 'override': {'name': 'conv_cls'}}], **kwargs)[source]¶
Decoupled Light SOLO mask head used in SOLO: Segmenting Objects by Locations
- Parameters
with_dcn (bool) – Whether use dcn in mask_convs and cls_convs, Defaults to False.
init_cfg (dict or list[dict], optional) – Initialization config dict.
- forward(x: Tuple[Tensor]) Tuple [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of classification scores and mask prediction.
mlvl_mask_preds_x (list[Tensor]): Multi-level mask prediction from x branch. Each element in the list has shape (batch_size, num_grids ,h ,w).
mlvl_mask_preds_y (list[Tensor]): Multi-level mask prediction from y branch. Each element in the list has shape (batch_size, num_grids ,h ,w).
mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids ,num_grids).
- Return type
tuple
- class mmdet.models.dense_heads.DeformableDETRHead(*args, share_pred_layer: bool = False, num_pred_layer: int = 6, as_two_stage: bool = False, **kwargs)[source]¶
Head of DeformDETR: Deformable DETR: Deformable Transformers for End-to-End Object Detection.
Code is modified from the official github repo.
More details can be found in the paper .
- Parameters
share_pred_layer (bool) – Whether to share parameters for all the prediction layers. Defaults to False.
num_pred_layer (int) – The number of the prediction layers. Defaults to 6.
as_two_stage (bool, optional) – Whether to generate the proposal from the outputs of encoder. Defaults to False.
- forward(hidden_states: Tensor, references: List[Tensor]) Tuple[Tensor, Tensor] [source]¶
Forward function.
- Parameters
hidden_states (Tensor) – Hidden states output from each decoder layer, has shape (num_decoder_layers, bs, num_queries, dim).
references (list[Tensor]) – List of the reference from the decoder. The first reference is the init_reference (initial) and the other num_decoder_layers(6) references are inter_references (intermediate). The init_reference has shape (bs, num_queries, 4) when as_two_stage of the detector is True, otherwise (bs, num_queries, 2). Each inter_reference has shape (bs, num_queries, 4) when with_box_refine of the detector is True, otherwise (bs, num_queries, 2). The coordinates are arranged as (cx, cy) when the last dimension is 2, and (cx, cy, w, h) when it is 4.
- Returns
results of head containing the following tensor.
all_layers_outputs_classes (Tensor): Outputs from the classification head, has shape (num_decoder_layers, bs, num_queries, cls_out_channels).
all_layers_outputs_coords (Tensor): Sigmoid outputs from the regression head with normalized coordinate format (cx, cy, w, h), has shape (num_decoder_layers, bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
- Return type
tuple[Tensor]
- loss(hidden_states: Tensor, references: List[Tensor], enc_outputs_class: Tensor, enc_outputs_coord: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection head on the queries of the upstream network.
- Parameters
hidden_states (Tensor) – Hidden states output from each decoder layer, has shape (num_decoder_layers, num_queries, bs, dim).
references (list[Tensor]) – List of the reference from the decoder. The first reference is the init_reference (initial) and the other num_decoder_layers(6) references are inter_references (intermediate). The init_reference has shape (bs, num_queries, 4) when as_two_stage of the detector is True, otherwise (bs, num_queries, 2). Each inter_reference has shape (bs, num_queries, 4) when with_box_refine of the detector is True, otherwise (bs, num_queries, 2). The coordinates are arranged as (cx, cy) when the last dimension is 2, and (cx, cy, w, h) when it is 4.
enc_outputs_class (Tensor) – The score of each point on encode feature map, has shape (bs, num_feat_points, cls_out_channels). Only when as_two_stage is True it would be passed in, otherwise it would be None.
enc_outputs_coord (Tensor) – The proposal generate from the encode feature map, has shape (bs, num_feat_points, 4) with the last dimension arranged as (cx, cy, w, h). Only when as_two_stage is True it would be passed in, otherwise it would be None.
batch_data_samples (list[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_by_feat(all_layers_cls_scores: Tensor, all_layers_bbox_preds: Tensor, enc_cls_scores: Tensor, enc_bbox_preds: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Loss function.
- Parameters
all_layers_cls_scores (Tensor) – Classification scores of all decoder layers, has shape (num_decoder_layers, bs, num_queries, cls_out_channels).
all_layers_bbox_preds (Tensor) – Regression outputs of all decoder layers. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and has shape (num_decoder_layers, bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
enc_cls_scores (Tensor) – The score of each point on encode feature map, has shape (bs, num_feat_points, cls_out_channels). Only when as_two_stage is True it would be passes in, otherwise, it would be None.
enc_bbox_preds (Tensor) – The proposal generate from the encode feature map, has shape (bs, num_feat_points, 4) with the last dimension arranged as (cx, cy, w, h). Only when as_two_stage is True it would be passed in, otherwise it would be None.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- predict(hidden_states: Tensor, references: List[Tensor], batch_data_samples: List[DetDataSample], rescale: bool = True) List[InstanceData] [source]¶
Perform forward propagation and loss calculation of the detection head on the queries of the upstream network.
- Parameters
hidden_states (Tensor) – Hidden states output from each decoder layer, has shape (num_decoder_layers, num_queries, bs, dim).
references (list[Tensor]) – List of the reference from the decoder. The first reference is the init_reference (initial) and the other num_decoder_layers(6) references are inter_references (intermediate). The init_reference has shape (bs, num_queries, 4) when as_two_stage of the detector is True, otherwise (bs, num_queries, 2). Each inter_reference has shape (bs, num_queries, 4) when with_box_refine of the detector is True, otherwise (bs, num_queries, 2). The coordinates are arranged as (cx, cy) when the last dimension is 2, and (cx, cy, w, h) when it is 4.
batch_data_samples (list[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool, optional) – If True, return boxes in original image space. Defaults to True.
- Returns
InstanceData]: Detection results of each image after the post process.
- Return type
list[obj
- predict_by_feat(all_layers_cls_scores: Tensor, all_layers_bbox_preds: Tensor, batch_img_metas: List[Dict], rescale: bool = False) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
- Parameters
all_layers_cls_scores (Tensor) – Classification scores of all decoder layers, has shape (num_decoder_layers, bs, num_queries, cls_out_channels).
all_layers_bbox_preds (Tensor) – Regression outputs of all decoder layers. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
batch_img_metas (list[dict]) – Meta information of each image.
rescale (bool, optional) – If True, return boxes in original image space. Default False.
- Returns
InstanceData]: Detection results of each image after the post process.
- Return type
list[obj
- class mmdet.models.dense_heads.EmbeddingRPNHead(num_proposals: int = 100, proposal_feature_channel: int = 256, init_cfg: Optional[Union[ConfigDict, dict]] = None, **kwargs)[source]¶
RPNHead in the Sparse R-CNN .
Unlike traditional RPNHead, this module does not need FPN input, but just decode init_proposal_bboxes and expand the first dimension of init_proposal_bboxes and init_proposal_features to the batch_size.
- Parameters
num_proposals (int) – Number of init_proposals. Defaults to 100.
proposal_feature_channel (int) – Channel number of init_proposal_feature. Defaults to 256.
init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict]) – Initialization config dict. Defaults to None.
- init_weights() None [source]¶
Initialize the init_proposal_bboxes as normalized.
[c_x, c_y, w, h], and we initialize it to the size of the entire image.
- loss(*args, **kwargs)[source]¶
Perform forward propagation and loss calculation of the detection head on the features of the upstream network.
- loss_and_predict(x: List[Tensor], batch_data_samples: List[DetDataSample], **kwargs) tuple [source]¶
Perform forward propagation of the head, then calculate loss and predictions from the features and data samples.
- predict(x: List[Tensor], batch_data_samples: List[DetDataSample], **kwargs) List[InstanceData] [source]¶
Perform forward propagation of the detection head and predict detection results on the features of the upstream network.
- class mmdet.models.dense_heads.FCOSHead(num_classes: int, in_channels: int, regress_ranges: Sequence[Tuple[int, int]] = ((-1, 64), (64, 128), (128, 256), (256, 512), (512, 100000000.0)), center_sampling: bool = False, center_sample_radius: float = 1.5, norm_on_bbox: bool = False, centerness_on_reg: bool = False, loss_cls: Union[ConfigDict, dict] = {'alpha': 0.25, 'gamma': 2.0, 'loss_weight': 1.0, 'type': 'FocalLoss', 'use_sigmoid': True}, loss_bbox: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'IoULoss'}, loss_centerness: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 32, 'requires_grad': True, 'type': 'GN'}, cls_predictor_cfg=None, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'conv_cls', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'}, **kwargs)[source]¶
Anchor-free head used in FCOS.
The FCOS head does not use anchor boxes. Instead bounding boxes are predicted at each pixel and a centerness measure is used to suppress low-quality predictions. Here norm_on_bbox, centerness_on_reg, dcn_on_last_conv are training tricks used in official repo, which will bring remarkable mAP gains of up to 4.9. Please see https://github.com/tianzhi0549/FCOS for more detail.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
strides (Sequence[int] or Sequence[Tuple[int, int]]) – Strides of points in multiple feature levels. Defaults to (4, 8, 16, 32, 64).
regress_ranges (Sequence[Tuple[int, int]]) – Regress range of multiple level points.
center_sampling (bool) – If true, use center sampling. Defaults to False.
center_sample_radius (float) – Radius of center sampling. Defaults to 1.5.
norm_on_bbox (bool) – If true, normalize the regression targets with FPN strides. Defaults to False.
centerness_on_reg (bool) – If true, position centerness on the regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. Defaults to False.
conv_bias (bool or str) – If specified as auto, it will be decided by the norm_cfg. Bias of conv will be set as True if norm_cfg is None, otherwise False. Defaults to “auto”.
loss_cls (
ConfigDict
or dict) – Config of classification loss.loss_bbox (
ConfigDict
or dict) – Config of localization loss.loss_centerness (
ConfigDict
, or dict) – Config of centerness loss.norm_cfg (
ConfigDict
or dict) – dictionary to construct and config norm layer. Defaults tonorm_cfg=dict(type='GN', num_groups=32, requires_grad=True)
.cls_predictor_cfg (
ConfigDict
or dict) – dictionary to construct and config conv_cls. Defaults to None.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict]) – Initialization config dict.
Example
>>> self = FCOSHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_score, bbox_pred, centerness = self.forward(feats) >>> assert len(cls_score) == len(self.scales)
- centerness_target(pos_bbox_targets: Tensor) Tensor [source]¶
Compute centerness targets.
- Parameters
pos_bbox_targets (Tensor) – BBox targets of positive bboxes in shape (num_pos, 4)
- Returns
Centerness target.
- Return type
Tensor
- forward(x: Tuple[Tensor]) Tuple[List[Tensor], List[Tensor], List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of each level outputs.
cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
centernesses (list[Tensor]): centerness for each scale level, each is a 4D-tensor, the channel number is num_points * 1.
- Return type
tuple
- forward_single(x: Tensor, scale: Scale, stride: int) Tuple[Tensor, Tensor, Tensor] [source]¶
Forward features of a single scale level.
- Parameters
x (Tensor) – FPN feature maps of the specified stride.
scale (
mmcv.cnn.Scale
) – Learnable scale module to resize the bbox prediction.stride (int) – The corresponding stride for feature maps, only used to normalize the bbox prediction when self.norm_on_bbox is True.
- Returns
scores for each class, bbox predictions and centerness predictions of input feature maps.
- Return type
tuple
- get_targets(points: List[Tensor], batch_gt_instances: List[InstanceData]) Tuple[List[Tensor], List[Tensor]] [source]¶
Compute regression, classification and centerness targets for points in multiple images.
- Parameters
points (list[Tensor]) – Points of each fpn level, each has shape (num_points, 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.
- Returns
Targets of each level.
concat_lvl_labels (list[Tensor]): Labels of each level.
concat_lvl_bbox_targets (list[Tensor]): BBox targets of each level.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], centernesses: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes.
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
centernesses (list[Tensor]) – centerness for each scale level, each is a 4D-tensor, the channel number is num_points * 1.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.FSAFHead(*args, score_threshold: Optional[float] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, **kwargs)[source]¶
Anchor-free head used in FSAF.
The head contains two subnetworks. The first classifies anchor boxes and the second regresses deltas for the anchors (num_anchors is 1 for anchor- free methods)
- Parameters
*args – Same as its base class in
RetinaHead
score_threshold (float, optional) – The score_threshold to calculate positive recall. If given, prediction scores lower than this value is counted as incorrect prediction. Defaults to None.
init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict]) – Initialization config dict.**kwargs – Same as its base class in
RetinaHead
Example
>>> import torch >>> self = FSAFHead(11, 7) >>> x = torch.rand(1, 7, 32, 32) >>> cls_score, bbox_pred = self.forward_single(x) >>> # Each anchor predicts a score for each class except background >>> cls_per_anchor = cls_score.shape[1] / self.num_anchors >>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors >>> assert cls_per_anchor == self.num_classes >>> assert box_per_anchor == 4
- calculate_pos_recall(cls_scores: List[Tensor], labels_list: List[Tensor], pos_inds: List[Tensor]) Tensor [source]¶
Calculate positive recall with score threshold.
- Parameters
cls_scores (list[Tensor]) – Classification scores at all fpn levels. Each tensor is in shape (N, num_classes * num_anchors, H, W)
labels_list (list[Tensor]) – The label that each anchor is assigned to. Shape (N * H * W * num_anchors, )
pos_inds (list[Tensor]) – List of bool tensors indicating whether the anchor is assigned to a positive label. Shape (N * H * W * num_anchors, )
- Returns
A single float number indicating the positive recall.
- Return type
Tensor
- collect_loss_level_single(cls_loss: Tensor, reg_loss: Tensor, assigned_gt_inds: Tensor, labels_seq: Tensor) Tensor [source]¶
Get the average loss in each FPN level w.r.t. each gt label.
- Parameters
cls_loss (Tensor) – Classification loss of each feature map pixel, shape (num_anchor, num_class)
reg_loss (Tensor) – Regression loss of each feature map pixel, shape (num_anchor, 4)
assigned_gt_inds (Tensor) – It indicates which gt the prior is assigned to (0-based, -1: no assignment). shape (num_anchor),
labels_seq – The rank of labels. shape (num_gt)
- Returns
shape (num_gt), average loss of each gt in this level
- Return type
Tensor
- forward_single(x: Tensor) Tuple[Tensor, Tensor] [source]¶
Forward feature map of a single scale level.
- Parameters
x (Tensor) – Feature map of a single scale level.
- Returns
cls_score (Tensor): Box scores for each scale level Has shape (N, num_points * num_classes, H, W).
bbox_pred (Tensor): Box energies / deltas for each scale level with shape (N, num_points * 4, H, W).
- Return type
tuple[Tensor, Tensor]
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Compute loss of the head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_points * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_points * 4, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- reweight_loss_single(cls_loss: Tensor, reg_loss: Tensor, assigned_gt_inds: Tensor, labels: Tensor, level: int, min_levels: Tensor) tuple [source]¶
Reweight loss values at each level.
Reassign loss values at each level by masking those where the pre-calculated loss is too large. Then return the reduced losses.
- Parameters
cls_loss (Tensor) – Element-wise classification loss. Shape: (num_anchors, num_classes)
reg_loss (Tensor) – Element-wise regression loss. Shape: (num_anchors, 4)
assigned_gt_inds (Tensor) – The gt indices that each anchor bbox is assigned to. -1 denotes a negative anchor, otherwise it is the gt index (0-based). Shape: (num_anchors, ),
labels (Tensor) – Label assigned to anchors. Shape: (num_anchors, ).
level (int) – The current level index in the pyramid (0-4 for RetinaNet)
min_levels (Tensor) – The best-matching level for each gt. Shape: (num_gts, ),
- Returns
cls_loss: Reduced corrected classification loss. Scalar.
reg_loss: Reduced corrected regression loss. Scalar.
pos_flags (Tensor): Corrected bool tensor indicating the final positive anchors. Shape: (num_anchors, ).
- Return type
tuple
- class mmdet.models.dense_heads.FeatureAdaption(in_channels: int, out_channels: int, kernel_size: int = 3, deform_groups: int = 4, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'name': 'conv_adaption', 'std': 0.01, 'type': 'Normal'}, 'std': 0.1, 'type': 'Normal'})[source]¶
Feature Adaption Module.
Feature Adaption Module is implemented based on DCN v1. It uses anchor shape prediction rather than feature map to predict offsets of deform conv layer.
- Parameters
in_channels (int) – Number of channels in the input feature map.
out_channels (int) – Number of channels in the output feature map.
kernel_size (int) – Deformable conv kernel size. Defaults to 3.
deform_groups (int) – Deformable conv group size. Defaults to 4.
init_cfg (
ConfigDict
or list[ConfigDict
] or dict or list[dict], optional) – Initialization config dict.
- forward(x: Tensor, shape: Tensor) Tensor [source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.dense_heads.FoveaHead(num_classes: int, in_channels: int, base_edge_list: List[int] = (16, 32, 64, 128, 256), scale_ranges: List[tuple] = ((8, 32), (16, 64), (32, 128), (64, 256), (128, 512)), sigma: float = 0.4, with_deform: bool = False, deform_groups: int = 4, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = {'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'conv_cls', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'}, **kwargs)[source]¶
Detection Head of `FoveaBox: Beyond Anchor-based Object Detector.
<https://arxiv.org/abs/1904.03797>`_.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
base_edge_list (list[int]) – List of edges.
scale_ranges (list[tuple]) – Range of scales.
sigma (float) – Super parameter of
FoveaHead
.with_deform (bool) – Whether use deform conv.
deform_groups (int) – Deformable conv group size.
init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict.
- forward_single(x: Tensor) Tuple[Tensor, Tensor] [source]¶
Forward features of a single scale level.
- Parameters
x (Tensor) – FPN feature maps of the specified stride.
- Returns
scores for each class and bbox predictions of input feature maps.
- Return type
tuple
- get_targets(batch_gt_instances: List[InstanceData], featmap_sizes: List[tuple], priors_list: List[Tensor]) Tuple[List[Tensor], List[Tensor]] [source]¶
Compute regression and classification for priors in multiple images.
- Parameters
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.featmap_sizes (list[tuple]) – Size tuple of feature maps.
priors_list (list[Tensor]) – Priors list of each fpn level, each has shape (num_priors, 2).
- Returns
Targets of each level.
flatten_labels (list[Tensor]): Labels of each level.
flatten_bbox_targets (list[Tensor]): BBox targets of each level.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level, each is a 4D-tensor, the channel number is num_priors * num_classes.
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_priors * 4.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.FreeAnchorRetinaHead(num_classes: int, in_channels: int, stacked_convs: int = 4, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, pre_anchor_topk: int = 50, bbox_thr: float = 0.6, gamma: float = 2.0, alpha: float = 0.5, **kwargs)[source]¶
FreeAnchor RetinaHead used in https://arxiv.org/abs/1909.02466.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
stacked_convs (int) – Number of conv layers in cls and reg tower. Defaults to 4.
conv_cfg (
ConfigDict
or dict, optional) – dictionary to construct and config conv layer. Defaults to None.norm_cfg (
ConfigDict
or dict, optional) – dictionary to construct and config norm layer. Defaults to norm_cfg=dict(type=’GN’, num_groups=32, requires_grad=True).pre_anchor_topk (int) – Number of boxes that be token in each bag. Defaults to 50
bbox_thr (float) – The threshold of the saturated linear function. It is usually the same with the IoU threshold used in NMS. Defaults to 0.6.
gamma (float) – Gamma parameter in focal loss. Defaults to 2.0.
alpha (float) – Alpha parameter in focal loss. Defaults to 0.5.
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict
- negative_bag_loss(cls_prob: Tensor, box_prob: Tensor) Tensor [source]¶
Compute negative bag loss.
\(FL((1 - P_{a_{j} \in A_{+}}) * (1 - P_{j}^{bg}))\).
\(P_{a_{j} \in A_{+}}\): Box_probability of matched samples.
\(P_{j}^{bg}\): Classification probability of negative samples.
- Parameters
cls_prob (Tensor) – Classification probability, in shape (num_img, num_anchors, num_classes).
box_prob (Tensor) – Box probability, in shape (num_img, num_anchors, num_classes).
- Returns
Negative bag loss in shape (num_img, num_anchors, num_classes).
- Return type
Tensor
- positive_bag_loss(matched_cls_prob: Tensor, matched_box_prob: Tensor) Tensor [source]¶
Compute positive bag loss.
\(-log( Mean-max(P_{ij}^{cls} * P_{ij}^{loc}) )\).
\(P_{ij}^{cls}\): matched_cls_prob, classification probability of matched samples.
\(P_{ij}^{loc}\): matched_box_prob, box probability of matched samples.
- Parameters
matched_cls_prob (Tensor) – Classification probability of matched samples in shape (num_gt, pre_anchor_topk).
matched_box_prob (Tensor) – BBox probability of matched samples, in shape (num_gt, pre_anchor_topk).
- Returns
Positive bag loss in shape (num_gt,).
- Return type
Tensor
- positive_loss_single(cls_prob: Tensor, bbox_pred: Tensor, flat_anchors: Tensor, gt_instances: InstanceData) tuple [source]¶
Compute positive loss.
- Parameters
cls_prob (Tensor) – Classification probability of shape (num_anchors, num_classes).
bbox_pred (Tensor) – Box probability of shape (num_anchors, 4).
flat_anchors (Tensor) – Multi-level anchors of the image, which are concatenated into a single tensor of shape (num_anchors, 4)
gt_instances (
InstanceData
) – Ground truth of instance annotations. It should includesbboxes
andlabels
attributes.
- Returns
box_prob (Tensor): Box probability of shape (num_anchors, 4).
positive_loss (Tensor): Positive loss of shape (num_pos, ).
num_pos (int): positive samples indexes.
- Return type
tuple
- class mmdet.models.dense_heads.GARPNHead(in_channels: int, num_classes: int = 1, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'conv_loc', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'}, **kwargs)[source]¶
Guided-Anchor-based RPN head.
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], shape_preds: List[Tensor], loc_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
shape_preds (list[Tensor]) – shape predictions for each scale level with shape (N, 1, H, W).
loc_preds (list[Tensor]) – location predictions for each scale level with shape (N, num_anchors * 2, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict
- class mmdet.models.dense_heads.GARetinaHead(num_classes: int, in_channels: int, stacked_convs: int = 4, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, **kwargs)[source]¶
Guided-Anchor-based RetinaNet head.
- class mmdet.models.dense_heads.GFLHead(num_classes: int, in_channels: int, stacked_convs: int = 4, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 32, 'requires_grad': True, 'type': 'GN'}, loss_dfl: Union[ConfigDict, dict] = {'loss_weight': 0.25, 'type': 'DistributionFocalLoss'}, bbox_coder: Union[ConfigDict, dict] = {'type': 'DistancePointBBoxCoder'}, reg_max: int = 16, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'gfl_cls', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'}, **kwargs)[source]¶
Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection.
GFL head structure is similar with ATSS, however GFL uses 1) joint representation for classification and localization quality, and 2) flexible General distribution for bounding box locations, which are supervised by Quality Focal Loss (QFL) and Distribution Focal Loss (DFL), respectively
https://arxiv.org/abs/2006.04388
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
stacked_convs (int) – Number of conv layers in cls and reg tower. Defaults to 4.
conv_cfg (
ConfigDict
or dict, optional) – dictionary to construct and config conv layer. Defaults to None.norm_cfg (
ConfigDict
or dict) – dictionary to construct and config norm layer. Default: dict(type=’GN’, num_groups=32, requires_grad=True).loss_qfl (
ConfigDict
or dict) – Config of Quality Focal Loss (QFL).bbox_coder (
ConfigDict
or dict) – Config of bbox coder. Defaults to ‘DistancePointBBoxCoder’.reg_max (int) – Max value of integral set :math:
{0, ..., reg_max}
in QFL setting. Defaults to 16.
:param init_cfg (
ConfigDict
or dict or list[dict] or: list[ConfigDict
]): Initialization config dict.Example
>>> self = GFLHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_quality_score, bbox_pred = self.forward(feats) >>> assert len(cls_quality_score) == len(self.scales)
- anchor_center(anchors: Tensor) Tensor [source]¶
Get anchor centers from anchors.
- Parameters
anchors (Tensor) – Anchor list with shape (N, 4),
xyxy
format.- Returns
Anchor centers with shape (N, 2),
xy
format.- Return type
Tensor
- forward(x: Tuple[Tensor]) Tuple[List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
Usually a tuple of classification scores and bbox prediction
cls_scores (list[Tensor]): Classification and quality (IoU) joint scores for all scale levels, each is a 4D-tensor, the channel number is num_classes.
bbox_preds (list[Tensor]): Box distribution logits for all scale levels, each is a 4D-tensor, the channel number is 4*(n+1), n is max value of integral set.
- Return type
tuple
- forward_single(x: Tensor, scale: Scale) Sequence[Tensor] [source]¶
Forward feature of a single scale level.
- Parameters
x (Tensor) – Features of a single scale level.
( (scale) – obj: mmcv.cnn.Scale): Learnable scale module to resize the bbox prediction.
- Returns
cls_score (Tensor): Cls and quality joint scores for a single scale level the channel number is num_classes.
bbox_pred (Tensor): Box distribution logits for a single scale level, the channel number is 4*(n+1), n is max value of integral set.
- Return type
tuple
- get_num_level_anchors_inside(num_level_anchors: List[int], inside_flags: Tensor) List[int] [source]¶
Get the number of valid anchors in every level.
- get_targets(anchor_list: List[Tensor], valid_flag_list: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs=True) tuple [source]¶
Get targets for GFL head.
This method is almost the same as AnchorHead.get_targets(). Besides returning the targets as the parent method does, it also returns the anchors as the first element of the returned tuple.
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Cls and quality scores for each scale level has shape (N, num_classes, H, W).
bbox_preds (list[Tensor]) – Box distribution logits for each scale level with shape (N, 4*(n+1), H, W), n is max value of integral set.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_by_feat_single(anchors: Tensor, cls_score: Tensor, bbox_pred: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, stride: Tuple[int], avg_factor: int) dict [source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
anchors (Tensor) – Box reference for each scale level with shape (N, num_total_anchors, 4).
cls_score (Tensor) – Cls and quality joint scores for each scale level has shape (N, num_classes, H, W).
bbox_pred (Tensor) – Box distribution logits for each scale level with shape (N, 4*(n+1), H, W), n is max value of integral set.
labels (Tensor) – Labels of each anchors with shape (N, num_total_anchors).
label_weights (Tensor) – Label weights of each anchor with shape (N, num_total_anchors)
bbox_targets (Tensor) – BBox regression targets of each anchor with shape (N, num_total_anchors, 4).
stride (Tuple[int]) – Stride in this scale level.
avg_factor (int) – Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using PseudoSampler, avg_factor is usually equal to the number of positive priors.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.GroundingDINOHead(contrastive_cfg={'max_text_len': 256}, **kwargs)[source]¶
Head of the Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-Set Object Detection.
- Parameters
contrastive_cfg (dict, optional) – Contrastive config that contains keys like
max_text_len
. Defaults to dict(max_text_len=256).
- forward(hidden_states: Tensor, references: List[Tensor], memory_text: Tensor, text_token_mask: Tensor) Tuple[Tensor] [source]¶
Forward function.
- Parameters
hidden_states (Tensor) – Hidden states output from each decoder layer, has shape (num_decoder_layers, bs, num_queries, dim).
references (List[Tensor]) – List of the reference from the decoder. The first reference is the init_reference (initial) and the other num_decoder_layers(6) references are inter_references (intermediate). The init_reference has shape (bs, num_queries, 4) when as_two_stage of the detector is True, otherwise (bs, num_queries, 2). Each inter_reference has shape (bs, num_queries, 4) when with_box_refine of the detector is True, otherwise (bs, num_queries, 2). The coordinates are arranged as (cx, cy) when the last dimension is 2, and (cx, cy, w, h) when it is 4.
memory_text (Tensor) – Memory text. It has shape (bs, len_text, text_embed_dims).
text_token_mask (Tensor) – Text token mask. It has shape (bs, len_text).
- Returns
results of head containing the following tensor.
all_layers_outputs_classes (Tensor): Outputs from the classification head, has shape (num_decoder_layers, bs, num_queries, cls_out_channels).
all_layers_outputs_coords (Tensor): Sigmoid outputs from the regression head with normalized coordinate format (cx, cy, w, h), has shape (num_decoder_layers, bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
- Return type
tuple[Tensor]
- loss(hidden_states: Tensor, references: List[Tensor], memory_text: Tensor, text_token_mask: Tensor, enc_outputs_class: Tensor, enc_outputs_coord: Tensor, batch_data_samples: List[DetDataSample], dn_meta: Dict[str, int]) dict [source]¶
Perform forward propagation and loss calculation of the detection head on the queries of the upstream network.
- Parameters
hidden_states (Tensor) – Hidden states output from each decoder layer, has shape (num_decoder_layers, bs, num_queries_total, dim), where num_queries_total is the sum of num_denoising_queries and num_matching_queries when self.training is True, else num_matching_queries.
references (list[Tensor]) – List of the reference from the decoder. The first reference is the init_reference (initial) and the other num_decoder_layers(6) references are inter_references (intermediate). The init_reference has shape (bs, num_queries_total, 4) and each inter_reference has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
memory_text (Tensor) – Memory text. It has shape (bs, len_text, text_embed_dims).
enc_outputs_class (Tensor) – The score of each point on encode feature map, has shape (bs, num_feat_points, cls_out_channels).
enc_outputs_coord (Tensor) – The proposal generate from the encode feature map, has shape (bs, num_feat_points, 4) with the last dimension arranged as (cx, cy, w, h).
batch_data_samples (list[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.dn_meta (Dict[str, int]) – The dictionary saves information about group collation, including ‘num_denoising_queries’ and ‘num_denoising_groups’. It will be used for split outputs of denoising and matching parts and loss calculation.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_by_feat_single(cls_scores: Tensor, bbox_preds: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict]) Tuple[Tensor] [source]¶
Loss function for outputs from a single decoder layer of a single feature level.
- Parameters
cls_scores (Tensor) – Box score logits from a single decoder layer for all images, has shape (bs, num_queries, cls_out_channels).
bbox_preds (Tensor) – Sigmoid outputs from a single decoder layer for all images, with normalized coordinate (cx, cy, w, h) and shape (bs, num_queries, 4).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
- Returns
A tuple including loss_cls, loss_box and loss_iou.
- Return type
Tuple[Tensor]
- predict(hidden_states: Tensor, references: List[Tensor], memory_text: Tensor, text_token_mask: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[InstanceData] [source]¶
Perform forward propagation and loss calculation of the detection head on the queries of the upstream network.
- Parameters
hidden_states (Tensor) – Hidden states output from each decoder layer, has shape (num_decoder_layers, num_queries, bs, dim).
references (List[Tensor]) – List of the reference from the decoder. The first reference is the init_reference (initial) and the other num_decoder_layers(6) references are inter_references (intermediate). The init_reference has shape (bs, num_queries, 4) when as_two_stage of the detector is True, otherwise (bs, num_queries, 2). Each inter_reference has shape (bs, num_queries, 4) when with_box_refine of the detector is True, otherwise (bs, num_queries, 2). The coordinates are arranged as (cx, cy) when the last dimension is 2, and (cx, cy, w, h) when it is 4.
memory_text (Tensor) – Memory text. It has shape (bs, len_text, text_embed_dims).
text_token_mask (Tensor) – Text token mask. It has shape (bs, len_text).
batch_data_samples (SampleList) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
rescale (bool, optional) – If True, return boxes in original image space. Defaults to True.
- Returns
- Detection results of each image
after the post process.
- Return type
InstanceList
- predict_by_feat(all_layers_cls_scores: Tensor, all_layers_bbox_preds: Tensor, batch_img_metas: List[Dict], batch_token_positive_maps: Optional[List[dict]] = None, rescale: bool = False) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
- Parameters
all_layers_cls_scores (Tensor) – Classification scores of all decoder layers, has shape (num_decoder_layers, bs, num_queries, cls_out_channels).
all_layers_bbox_preds (Tensor) – Regression outputs of all decoder layers. Each is a 4D-tensor with normalized coordinate format (cx, cy, w, h) and shape (num_decoder_layers, bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
batch_img_metas (List[Dict]) – _description_
batch_token_positive_maps (list[dict], Optional) – Batch token positive map. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.GuidedAnchorHead(num_classes: int, in_channels: int, feat_channels: int = 256, approx_anchor_generator: Union[ConfigDict, dict] = {'octave_base_scale': 8, 'ratios': [0.5, 1.0, 2.0], 'scales_per_octave': 3, 'strides': [4, 8, 16, 32, 64], 'type': 'AnchorGenerator'}, square_anchor_generator: Union[ConfigDict, dict] = {'ratios': [1.0], 'scales': [8], 'strides': [4, 8, 16, 32, 64], 'type': 'AnchorGenerator'}, anchor_coder: Union[ConfigDict, dict] = {'target_means': [0.0, 0.0, 0.0, 0.0], 'target_stds': [1.0, 1.0, 1.0, 1.0], 'type': 'DeltaXYWHBBoxCoder'}, bbox_coder: Union[ConfigDict, dict] = {'target_means': [0.0, 0.0, 0.0, 0.0], 'target_stds': [1.0, 1.0, 1.0, 1.0], 'type': 'DeltaXYWHBBoxCoder'}, reg_decoded_bbox: bool = False, deform_groups: int = 4, loc_filter_thr: float = 0.01, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, loss_loc: Union[ConfigDict, dict] = {'alpha': 0.25, 'gamma': 2.0, 'loss_weight': 1.0, 'type': 'FocalLoss', 'use_sigmoid': True}, loss_shape: Union[ConfigDict, dict] = {'beta': 0.2, 'loss_weight': 1.0, 'type': 'BoundedIoULoss'}, loss_cls: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_bbox: Union[ConfigDict, dict] = {'beta': 1.0, 'loss_weight': 1.0, 'type': 'SmoothL1Loss'}, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'lbias_prob': 0.01, 'name': 'conv_loc', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'})[source]¶
Guided-Anchor-based head (GA-RPN, GA-RetinaNet, etc.).
This GuidedAnchorHead will predict high-quality feature guided anchors and locations where anchors will be kept in inference. There are mainly 3 categories of bounding-boxes.
Sampled 9 pairs for target assignment. (approxes)
The square boxes where the predicted anchors are based on. (squares)
Guided anchors.
Please refer to https://arxiv.org/abs/1901.03278 for more details.
- Parameters
num_classes (int) – Number of classes.
in_channels (int) – Number of channels in the input feature map.
feat_channels (int) – Number of hidden channels. Defaults to 256.
approx_anchor_generator (
ConfigDict
or dict) – Config dict for approx generatorsquare_anchor_generator (
ConfigDict
or dict) – Config dict for square generatoranchor_coder (
ConfigDict
or dict) – Config dict for anchor coderbbox_coder (
ConfigDict
or dict) – Config dict for bbox coderreg_decoded_bbox (bool) – If true, the regression loss would be applied directly on decoded bounding boxes, converting both the predicted boxes and regression targets to absolute coordinates format. Defaults to False. It should be True when using IoULoss, GIoULoss, or DIoULoss in the bbox head.
deform_groups – (int): Group number of DCN in FeatureAdaption module. Defaults to 4.
loc_filter_thr (float) – Threshold to filter out unconcerned regions. Defaults to 0.01.
loss_loc (
ConfigDict
or dict) – Config of location loss.loss_shape (
ConfigDict
or dict) – Config of anchor shape loss.loss_cls (
ConfigDict
or dict) – Config of classification loss.loss_bbox (
ConfigDict
or dict) – Config of bbox regression loss.init_cfg (
ConfigDict
or list[ConfigDict
] or dict or list[dict], optional) – Initialization config dict.
- ga_loc_targets(batch_gt_instances: List[InstanceData], featmap_sizes: List[Tuple[int, int]]) tuple [source]¶
Compute location targets for guided anchoring.
Each feature map is divided into positive, negative and ignore regions. - positive regions: target 1, weight 1 - ignore regions: target 0, weight 0 - negative regions: target 0, weight 0.1
- Parameters
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.featmap_sizes (list[tuple]) – Multi level sizes of each feature maps.
- Returns
Returns a tuple containing location targets.
- Return type
tuple
- ga_shape_targets(approx_list: List[List[Tensor]], inside_flag_list: List[List[Tensor]], square_list: List[List[Tensor]], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs: bool = True) tuple [source]¶
Compute guided anchoring targets.
- Parameters
approx_list (list[list[Tensor]]) – Multi level approxs of each image.
inside_flag_list (list[list[Tensor]]) – Multi level inside flags of each image.
square_list (list[list[Tensor]]) – Multi level squares of each image.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.unmap_outputs (bool) – unmap outputs or not. Defaults to None.
- Returns
Returns a tuple containing shape targets.
- Return type
tuple
- get_anchors(featmap_sizes: List[Tuple[int, int]], shape_preds: List[Tensor], loc_preds: List[Tensor], batch_img_metas: List[dict], use_loc_filter: bool = False, device: str = 'cuda') tuple [source]¶
Get squares according to feature map sizes and guided anchors.
- Parameters
featmap_sizes (list[tuple]) – Multi-level feature map sizes.
shape_preds (list[tensor]) – Multi-level shape predictions.
loc_preds (list[tensor]) – Multi-level location predictions.
batch_img_metas (list[dict]) – Image meta info.
use_loc_filter (bool) – Use loc filter or not. Defaults to False
device (str) – device for returned tensors. Defaults to cuda.
- Returns
square approxs of each image, guided anchors of each image, loc masks of each image.
- Return type
tuple
- get_sampled_approxs(featmap_sizes: List[Tuple[int, int]], batch_img_metas: List[dict], device: str = 'cuda') tuple [source]¶
Get sampled approxs and inside flags according to feature map sizes.
- Parameters
featmap_sizes (list[tuple]) – Multi-level feature map sizes.
batch_img_metas (list[dict]) – Image meta info.
device (str) – device for returned tensors
- Returns
approxes of each image, inside flags of each image
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], shape_preds: List[Tensor], loc_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
shape_preds (list[Tensor]) – shape predictions for each scale level with shape (N, 1, H, W).
loc_preds (list[Tensor]) – location predictions for each scale level with shape (N, num_anchors * 2, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_loc_single(loc_pred: Tensor, loc_target: Tensor, loc_weight: Tensor, avg_factor: float) Tensor [source]¶
Compute location loss in single level.
- loss_shape_single(shape_pred: Tensor, bbox_anchors: Tensor, bbox_gts: Tensor, anchor_weights: Tensor, avg_factor: int) Tensor [source]¶
Compute shape loss in single level.
- predict_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], shape_preds: List[Tensor], loc_preds: List[Tensor], batch_img_metas: List[dict], cfg: Optional[Union[ConfigDict, dict]] = None, rescale: bool = False) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
- Parameters
cls_scores (list[Tensor]) – Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W).
shape_preds (list[Tensor]) – shape predictions for each scale level with shape (N, 1, H, W).
loc_preds (list[Tensor]) – location predictions for each scale level with shape (N, num_anchors * 2, H, W).
batch_img_metas (list[dict], Optional) – Batch image meta info. Defaults to None.
cfg (ConfigDict, optional) – Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.LADHead(*args, topk: int = 9, score_voting: bool = True, covariance_type: str = 'diag', **kwargs)[source]¶
Label Assignment Head from the paper: Improving Object Detection by Label Assignment Distillation
- get_label_assignment(cls_scores: List[Tensor], bbox_preds: List[Tensor], iou_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) tuple [source]¶
Get label assignment (from teacher).
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
iou_preds (list[Tensor]) – iou_preds for each scale level with shape (N, num_anchors * 1, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
Returns a tuple containing label assignment variables.
labels (Tensor): Labels of all anchors, each with shape (num_anchors,).
labels_weight (Tensor): Label weights of all anchor. each with shape (num_anchors,).
bboxes_target (Tensor): BBox targets of all anchors. each with shape (num_anchors, 4).
bboxes_weight (Tensor): BBox weights of all anchors. each with shape (num_anchors, 4).
pos_inds_flatten (Tensor): Contains all index of positive sample in all anchor.
pos_anchors (Tensor): Positive anchors.
num_pos (int): Number of positive anchors.
- Return type
tuple
- loss(x: List[Tensor], label_assignment_results: tuple, batch_data_samples: List[DetDataSample]) dict [source]¶
Forward train with the available label assignment (student receives from teacher).
- Parameters
x (list[Tensor]) – Features from FPN.
label_assignment_results (tuple) – As the outputs defined in the function self.get_label_assignment.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
(dict[str, Tensor]): A dictionary of loss components.
- Return type
losses
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], iou_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, label_assignment_results: Optional[tuple] = None) dict [source]¶
Compute losses of the head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
iou_preds (list[Tensor]) – iou_preds for each scale level with shape (N, num_anchors * 1, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.label_assignment_results (tuple, optional) – As the outputs defined in the function self.get_ label_assignment.
- Returns
A dictionary of loss gmm_assignment.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.LDHead(num_classes: int, in_channels: int, loss_ld: Union[ConfigDict, dict] = {'T': 10, 'loss_weight': 0.25, 'type': 'LocalizationDistillationLoss'}, **kwargs)[source]¶
Localization distillation Head. (Short description)
It utilizes the learned bbox distributions to transfer the localization dark knowledge from teacher to student. Original paper: Localization Distillation for Object Detection.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
loss_ld (
ConfigDict
or dict) – Config of Localization Distillation Loss (LD), T is the temperature for distillation.
- loss(x: List[Tensor], out_teacher: Tuple[Tensor], batch_data_samples: List[DetDataSample]) dict [source]¶
- Parameters
x (list[Tensor]) – Features from FPN.
out_teacher (tuple[Tensor]) – The output of teacher.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
The loss components and proposals of each image.
losses (dict[str, Tensor]): A dictionary of loss components.
proposal_list (list[Tensor]): Proposals of each image.
- Return type
tuple[dict, list]
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], soft_targets: List[Tensor], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Compute losses of the head.
- Parameters
cls_scores (list[Tensor]) – Cls and quality scores for each scale level has shape (N, num_classes, H, W).
bbox_preds (list[Tensor]) – Box distribution logits for each scale level with shape (N, 4*(n+1), H, W), n is max value of integral set.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.soft_targets (list[Tensor]) – Soft BBox regression targets.
batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_by_feat_single(anchors: Tensor, cls_score: Tensor, bbox_pred: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, stride: Tuple[int], soft_targets: Tensor, avg_factor: int)[source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
anchors (Tensor) – Box reference for each scale level with shape (N, num_total_anchors, 4).
cls_score (Tensor) – Cls and quality joint scores for each scale level has shape (N, num_classes, H, W).
bbox_pred (Tensor) – Box distribution logits for each scale level with shape (N, 4*(n+1), H, W), n is max value of integral set.
labels (Tensor) – Labels of each anchors with shape (N, num_total_anchors).
label_weights (Tensor) – Label weights of each anchor with shape (N, num_total_anchors)
bbox_targets (Tensor) – BBox regression targets of each anchor with shape (N, num_total_anchors, 4).
stride (tuple) – Stride in this scale level.
soft_targets (Tensor) – Soft BBox regression targets.
avg_factor (int) – Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using PseudoSampler, avg_factor is usually equal to the number of positive priors.
- Returns
Loss components and weight targets.
- Return type
dict[tuple, Tensor]
- class mmdet.models.dense_heads.Mask2FormerHead(in_channels: List[int], feat_channels: int, out_channels: int, num_things_classes: int = 80, num_stuff_classes: int = 53, num_queries: int = 100, num_transformer_feat_level: int = 3, pixel_decoder: Union[ConfigDict, dict] = Ellipsis, enforce_decoder_input_project: bool = False, transformer_decoder: Union[ConfigDict, dict] = Ellipsis, positional_encoding: Union[ConfigDict, dict] = {'normalize': True, 'num_feats': 128}, loss_cls: Union[ConfigDict, dict] = {'class_weight': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.1], 'loss_weight': 2.0, 'reduction': 'mean', 'type': 'CrossEntropyLoss', 'use_sigmoid': False}, loss_mask: Union[ConfigDict, dict] = {'loss_weight': 5.0, 'reduction': 'mean', 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_dice: Union[ConfigDict, dict] = {'activate': True, 'eps': 1.0, 'loss_weight': 5.0, 'naive_dice': True, 'reduction': 'mean', 'type': 'DiceLoss', 'use_sigmoid': True}, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, **kwargs)[source]¶
Implements the Mask2Former head.
See Masked-attention Mask Transformer for Universal Image Segmentation for details.
- Parameters
in_channels (list[int]) – Number of channels in the input feature map.
feat_channels (int) – Number of channels for features.
out_channels (int) – Number of channels for output.
num_things_classes (int) – Number of things.
num_stuff_classes (int) – Number of stuff.
num_queries (int) – Number of query in Transformer decoder.
pixel_decoder (
ConfigDict
or dict) – Config for pixel decoder. Defaults to None.enforce_decoder_input_project (bool, optional) – Whether to add a layer to change the embed_dim of transformer encoder in pixel decoder to the embed_dim of transformer decoder. Defaults to False.
transformer_decoder (
ConfigDict
or dict) – Config for transformer decoder. Defaults to None.positional_encoding (
ConfigDict
or dict) – Config for transformer decoder position encoding. Defaults to dict(num_feats=128, normalize=True).loss_cls (
ConfigDict
or dict) – Config of the classification loss. Defaults to None.loss_mask (
ConfigDict
or dict) – Config of the mask loss. Defaults to None.loss_dice (
ConfigDict
or dict) – Config of the dice loss. Defaults to None.train_cfg (
ConfigDict
or dict, optional) – Training config of Mask2Former head.test_cfg (
ConfigDict
or dict, optional) – Testing config of Mask2Former head.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict. Defaults to None.
- forward(x: List[Tensor], batch_data_samples: List[DetDataSample]) Tuple[List[Tensor]] [source]¶
Forward function.
- Parameters
x (list[Tensor]) – Multi scale Features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
A tuple contains two elements.
cls_pred_list (list[Tensor)]: Classification logits for each decoder layer. Each is a 3D-tensor with shape (batch_size, num_queries, cls_out_channels). Note cls_out_channels should includes background.
mask_pred_list (list[Tensor]): Mask logits for each decoder layer. Each with shape (batch_size, num_queries, h, w).
- Return type
tuple[list[Tensor]]
- class mmdet.models.dense_heads.MaskFormerHead(in_channels: List[int], feat_channels: int, out_channels: int, num_things_classes: int = 80, num_stuff_classes: int = 53, num_queries: int = 100, pixel_decoder: Union[ConfigDict, dict] = Ellipsis, enforce_decoder_input_project: bool = False, transformer_decoder: Union[ConfigDict, dict] = Ellipsis, positional_encoding: Union[ConfigDict, dict] = {'normalize': True, 'num_feats': 128}, loss_cls: Union[ConfigDict, dict] = {'class_weight': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.1], 'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': False}, loss_mask: Union[ConfigDict, dict] = {'alpha': 0.25, 'gamma': 2.0, 'loss_weight': 20.0, 'type': 'FocalLoss', 'use_sigmoid': True}, loss_dice: Union[ConfigDict, dict] = {'activate': True, 'loss_weight': 1.0, 'naive_dice': True, 'type': 'DiceLoss', 'use_sigmoid': True}, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, **kwargs)[source]¶
Implements the MaskFormer head.
See Per-Pixel Classification is Not All You Need for Semantic Segmentation for details.
- Parameters
in_channels (list[int]) – Number of channels in the input feature map.
feat_channels (int) – Number of channels for feature.
out_channels (int) – Number of channels for output.
num_things_classes (int) – Number of things.
num_stuff_classes (int) – Number of stuff.
num_queries (int) – Number of query in Transformer.
pixel_decoder (
ConfigDict
or dict) – Config for pixel decoder.enforce_decoder_input_project (bool) – Whether to add a layer to change the embed_dim of transformer encoder in pixel decoder to the embed_dim of transformer decoder. Defaults to False.
transformer_decoder (
ConfigDict
or dict) – Config for transformer decoder.positional_encoding (
ConfigDict
or dict) – Config for transformer decoder position encoding.loss_cls (
ConfigDict
or dict) – Config of the classification loss. Defaults to CrossEntropyLoss.loss_mask (
ConfigDict
or dict) – Config of the mask loss. Defaults to FocalLoss.loss_dice (
ConfigDict
or dict) – Config of the dice loss. Defaults to DiceLoss.train_cfg (
ConfigDict
or dict, optional) – Training config of MaskFormer head.test_cfg (
ConfigDict
or dict, optional) – Testing config of MaskFormer head.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict. Defaults to None.
- forward(x: Tuple[Tensor], batch_data_samples: List[DetDataSample]) Tuple[Tensor] [source]¶
Forward function.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
a tuple contains two elements.
all_cls_scores (Tensor): Classification scores for each scale level. Each is a 4D-tensor with shape (num_decoder, batch_size, num_queries, cls_out_channels). Note cls_out_channels should includes background.
all_mask_preds (Tensor): Mask scores for each decoder layer. Each with shape (num_decoder, batch_size, num_queries, h, w).
- Return type
tuple[Tensor]
- get_targets(cls_scores_list: List[Tensor], mask_preds_list: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], return_sampling_results: bool = False) Tuple[List[Union[Tensor, int]]] [source]¶
Compute classification and mask targets for all images for a decoder layer.
- Parameters
cls_scores_list (list[Tensor]) – Mask score logits from a single decoder layer for all images. Each with shape (num_queries, cls_out_channels).
mask_preds_list (list[Tensor]) – Mask logits from a single decoder layer for all images. Each with shape (num_queries, h, w).
(list[obj (batch_gt_instances) – InstanceData]): each contains
labels
andmasks
.batch_img_metas (list[dict]) – List of image meta information.
return_sampling_results (bool) – Whether to return the sampling results. Defaults to False.
- Returns
a tuple containing the following targets.
labels_list (list[Tensor]): Labels of all images. Each with shape (num_queries, ).
label_weights_list (list[Tensor]): Label weights of all images. Each with shape (num_queries, ).
mask_targets_list (list[Tensor]): Mask targets of all images. Each with shape (num_queries, h, w).
mask_weights_list (list[Tensor]): Mask weights of all images. Each with shape (num_queries, ).
- avg_factor (int): Average factor that is used to average the loss. When using sampling method, avg_factor is
usually the sum of positive and negative priors. When using MaskPseudoSampler, avg_factor is usually equal to the number of positive priors.
- additional_returns: This function enables user-defined returns from
self._get_targets_single. These returns are currently refined to properties at each feature map (i.e. having HxW dimension). The results will be concatenated after the end.
- Return type
tuple
- loss(x: Tuple[Tensor], batch_data_samples: List[DetDataSample]) Dict[str, Tensor] [source]¶
Perform forward propagation and loss calculation of the panoptic head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Multi-level features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
a dictionary of loss components
- Return type
dict[str, Tensor]
- loss_by_feat(all_cls_scores: Tensor, all_mask_preds: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict]) Dict[str, Tensor] [source]¶
Loss function.
- Parameters
all_cls_scores (Tensor) – Classification scores for all decoder layers with shape (num_decoder, batch_size, num_queries, cls_out_channels). Note cls_out_channels should includes background.
all_mask_preds (Tensor) – Mask scores for all decoder layers with shape (num_decoder, batch_size, num_queries, h, w).
(list[obj (batch_gt_instances) – InstanceData]): each contains
labels
andmasks
.batch_img_metas (list[dict]) – List of image meta information.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- predict(x: Tuple[Tensor], batch_data_samples: List[DetDataSample]) Tuple[Tensor] [source]¶
Test without augmentaton.
- Parameters
x (tuple[Tensor]) – Multi-level features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
A tuple contains two tensors.
- mask_cls_results (Tensor): Mask classification logits, shape (batch_size, num_queries, cls_out_channels).
Note cls_out_channels should includes background.
mask_pred_results (Tensor): Mask logits, shape (batch_size, num_queries, h, w).
- Return type
tuple[Tensor]
- preprocess_gt(batch_gt_instances: List[InstanceData], batch_gt_semantic_segs: List[Optional[PixelData]]) List[InstanceData] [source]¶
Preprocess the ground truth for all images.
- Parameters
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includeslabels
, each is ground truth labels of each bbox, with shape (num_gts, ) andmasks
, each is ground truth masks of each instances of a image, shape (num_gts, h, w).gt_semantic_seg (list[Optional[PixelData]]) – Ground truth of semantic segmentation, each with the shape (1, h, w). [0, num_thing_class - 1] means things, [num_thing_class, num_class-1] means stuff, 255 means VOID. It’s None when training instance segmentation.
- Returns
InstanceData]: each contains the following keys
labels (Tensor): Ground truth class indices for a image, with shape (n, ), n is the sum of number of stuff type and number of instance in a image.
masks (Tensor): Ground truth mask for a image, with shape (n, h, w).
- Return type
list[obj
- class mmdet.models.dense_heads.NASFCOSHead(*args, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, **kwargs)[source]¶
Anchor-free head used in NASFCOS.
It is quite similar with FCOS head, except for the searched structure of classification branch and bbox regression branch, where a structure of “dconv3x3, conv3x3, dconv3x3, conv1x1” is utilized instead.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
strides (Sequence[int] or Sequence[Tuple[int, int]]) – Strides of points in multiple feature levels. Defaults to (4, 8, 16, 32, 64).
regress_ranges (Sequence[Tuple[int, int]]) – Regress range of multiple level points.
center_sampling (bool) – If true, use center sampling. Defaults to False.
center_sample_radius (float) – Radius of center sampling. Defaults to 1.5.
norm_on_bbox (bool) – If true, normalize the regression targets with FPN strides. Defaults to False.
centerness_on_reg (bool) – If true, position centerness on the regress branch. Please refer to https://github.com/tianzhi0549/FCOS/issues/89#issuecomment-516877042. Defaults to False.
conv_bias (bool or str) – If specified as auto, it will be decided by the norm_cfg. Bias of conv will be set as True if norm_cfg is None, otherwise False. Defaults to “auto”.
loss_cls (
ConfigDict
or dict) – Config of classification loss.loss_bbox (
ConfigDict
or dict) – Config of localization loss.loss_centerness (
ConfigDict
, or dict) – Config of centerness loss.norm_cfg (
ConfigDict
or dict) – dictionary to construct and config norm layer. Defaults tonorm_cfg=dict(type='GN', num_groups=32, requires_grad=True)
.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict.
- class mmdet.models.dense_heads.PAAHead(*args, topk: int = 9, score_voting: bool = True, covariance_type: str = 'diag', **kwargs)[source]¶
Head of PAAAssignment: Probabilistic Anchor Assignment with IoU Prediction for Object Detection.
Code is modified from the official github repo.
More details can be found in the paper .
- Parameters
topk (int) – Select topk samples with smallest loss in each level.
score_voting (bool) – Whether to use score voting in post-process.
covariance_type –
String describing the type of covariance parameters to be used in
sklearn.mixture.GaussianMixture
. It must be one of:’full’: each component has its own general covariance matrix
’tied’: all components share the same general covariance matrix
’diag’: each component has its own diagonal covariance matrix
’spherical’: each component has its own single variance
Default: ‘diag’. From ‘full’ to ‘spherical’, the gmm fitting process is faster yet the performance could be influenced. For most cases, ‘diag’ should be a good choice.
- get_pos_loss(anchors: List[Tensor], cls_score: Tensor, bbox_pred: Tensor, label: Tensor, label_weight: Tensor, bbox_target: dict, bbox_weight: Tensor, pos_inds: Tensor) Tensor [source]¶
Calculate loss of all potential positive samples obtained from first match process.
- Parameters
anchors (list[Tensor]) – Anchors of each scale.
cls_score (Tensor) – Box scores of single image with shape (num_anchors, num_classes)
bbox_pred (Tensor) – Box energies / deltas of single image with shape (num_anchors, 4)
label (Tensor) – classification target of each anchor with shape (num_anchors,)
label_weight (Tensor) – Classification loss weight of each anchor with shape (num_anchors).
bbox_target (dict) – Regression target of each anchor with shape (num_anchors, 4).
bbox_weight (Tensor) – Bbox weight of each anchor with shape (num_anchors, 4).
pos_inds (Tensor) – Index of all positive samples got from first assign process.
- Returns
Losses of all positive samples in single image.
- Return type
Tensor
- get_targets(anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs: bool = True) tuple [source]¶
Get targets for PAA head.
This method is almost the same as AnchorHead.get_targets(). We direct return the results from _get_targets_single instead map it to levels by images_to_levels function.
- Parameters
anchor_list (list[list[Tensor]]) – Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]) – Multi level valid flags of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, )
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.unmap_outputs (bool) – Whether to map outputs back to the original set of anchors. Defaults to True.
- Returns
Usually returns a tuple containing learning targets.
- labels (list[Tensor]): Labels of all anchors, each with
shape (num_anchors,).
- label_weights (list[Tensor]): Label weights of all anchor.
each with shape (num_anchors,).
- bbox_targets (list[Tensor]): BBox targets of all anchors.
each with shape (num_anchors, 4).
- bbox_weights (list[Tensor]): BBox weights of all anchors.
each with shape (num_anchors, 4).
- pos_inds (list[Tensor]): Contains all index of positive
sample in all anchor.
- gt_inds (list[Tensor]): Contains all gt_index of positive
sample in all anchor.
- Return type
tuple
- gmm_separation_scheme(gmm_assignment: Tensor, scores: Tensor, pos_inds_gmm: Tensor) Tuple[Tensor, Tensor] [source]¶
A general separation scheme for gmm model.
It separates a GMM distribution of candidate samples into three parts, 0 1 and uncertain areas, and you can implement other separation schemes by rewriting this function.
- Parameters
gmm_assignment (Tensor) – The prediction of GMM which is of shape (num_samples,). The 0/1 value indicates the distribution that each sample comes from.
scores (Tensor) – The probability of sample coming from the fit GMM distribution. The tensor is of shape (num_samples,).
pos_inds_gmm (Tensor) – All the indexes of samples which are used to fit GMM model. The tensor is of shape (num_samples,)
- Returns
The indices of positive and ignored samples.
pos_inds_temp (Tensor): Indices of positive samples.
ignore_inds_temp (Tensor): Indices of ignore samples.
- Return type
tuple[Tensor, Tensor]
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], iou_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
iou_preds (list[Tensor]) – iou_preds for each scale level with shape (N, num_anchors * 1, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss gmm_assignment.
- Return type
dict[str, Tensor]
- paa_reassign(pos_losses: Tensor, label: Tensor, label_weight: Tensor, bbox_weight: Tensor, pos_inds: Tensor, pos_gt_inds: Tensor, anchors: List[Tensor]) tuple [source]¶
Fit loss to GMM distribution and separate positive, ignore, negative samples again with GMM model.
- Parameters
pos_losses (Tensor) – Losses of all positive samples in single image.
label (Tensor) – classification target of each anchor with shape (num_anchors,)
label_weight (Tensor) – Classification loss weight of each anchor with shape (num_anchors).
bbox_weight (Tensor) – Bbox weight of each anchor with shape (num_anchors, 4).
pos_inds (Tensor) – Index of all positive samples got from first assign process.
pos_gt_inds (Tensor) – Gt_index of all positive samples got from first assign process.
anchors (list[Tensor]) – Anchors of each scale.
- Returns
Usually returns a tuple containing learning targets.
label (Tensor): classification target of each anchor after paa assign, with shape (num_anchors,)
label_weight (Tensor): Classification loss weight of each anchor after paa assign, with shape (num_anchors).
bbox_weight (Tensor): Bbox weight of each anchor with shape (num_anchors, 4).
num_pos (int): The number of positive samples after paa assign.
- Return type
tuple
- predict_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[Union[ConfigDict, dict]] = None, rescale: bool = False, with_nms: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
This method is same as BaseDenseHead.get_results().
- score_voting(det_bboxes: Tensor, det_labels: Tensor, mlvl_bboxes: Tensor, mlvl_nms_scores: Tensor, score_thr: float) Tuple[Tensor, Tensor] [source]¶
Implementation of score voting method works on each remaining boxes after NMS procedure.
- Parameters
det_bboxes (Tensor) – Remaining boxes after NMS procedure, with shape (k, 5), each dimension means (x1, y1, x2, y2, score).
det_labels (Tensor) – The label of remaining boxes, with shape (k, 1),Labels are 0-based.
mlvl_bboxes (Tensor) – All boxes before the NMS procedure, with shape (num_anchors,4).
mlvl_nms_scores (Tensor) – The scores of all boxes which is used in the NMS procedure, with shape (num_anchors, num_class)
score_thr (float) – The score threshold of bboxes.
- Returns
Usually returns a tuple containing voting results.
- det_bboxes_voted (Tensor): Remaining boxes after
score voting procedure, with shape (k, 5), each dimension means (x1, y1, x2, y2, score).
- det_labels_voted (Tensor): Label of remaining bboxes
after voting, with shape (num_anchors,).
- Return type
tuple
- class mmdet.models.dense_heads.PISARetinaHead(num_classes, in_channels, stacked_convs=4, conv_cfg=None, norm_cfg=None, anchor_generator={'octave_base_scale': 4, 'ratios': [0.5, 1.0, 2.0], 'scales_per_octave': 3, 'strides': [8, 16, 32, 64, 128], 'type': 'AnchorGenerator'}, init_cfg={'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'retina_cls', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'}, **kwargs)[source]¶
PISA Retinanet Head.
- The head owns the same structure with Retinanet Head, but differs in two
aspects: 1. Importance-based Sample Reweighting Positive (ISR-P) is applied to
change the positive loss weights.
Classification-aware regression loss is adopted as a third loss.
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Compute losses of the head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
Loss dict, comprise classification loss, regression loss and carl loss.
- Return type
dict
- class mmdet.models.dense_heads.PISASSDHead(num_classes: int = 80, in_channels: Sequence[int] = (512, 1024, 512, 256, 256, 256), stacked_convs: int = 0, feat_channels: int = 256, use_depthwise: bool = False, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, act_cfg: Optional[Union[ConfigDict, dict]] = None, anchor_generator: Union[ConfigDict, dict] = {'basesize_ratio_range': (0.1, 0.9), 'input_size': 300, 'ratios': ([2], [2, 3], [2, 3], [2, 3], [2], [2]), 'scale_major': False, 'strides': [8, 16, 32, 64, 100, 300], 'type': 'SSDAnchorGenerator'}, bbox_coder: Union[ConfigDict, dict] = {'clip_border': True, 'target_means': [0.0, 0.0, 0.0, 0.0], 'target_stds': [1.0, 1.0, 1.0, 1.0], 'type': 'DeltaXYWHBBoxCoder'}, reg_decoded_bbox: bool = False, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'bias': 0, 'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'})[source]¶
Implementation of PISA SSD head
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (Sequence[int]) – Number of channels in the input feature map.
stacked_convs (int) – Number of conv layers in cls and reg tower. Defaults to 0.
feat_channels (int) – Number of hidden channels when stacked_convs > 0. Defaults to 256.
use_depthwise (bool) – Whether to use DepthwiseSeparableConv. Defaults to False.
conv_cfg (
ConfigDict
or dict, Optional) – Dictionary to construct and config conv layer. Defaults to None.norm_cfg (
ConfigDict
or dict, Optional) – Dictionary to construct and config norm layer. Defaults to None.act_cfg (
ConfigDict
or dict, Optional) – Dictionary to construct and config activation layer. Defaults to None.anchor_generator (
ConfigDict
or dict) – Config dict for anchor generator.bbox_coder (
ConfigDict
or dict) – Config of bounding box coder.reg_decoded_bbox (bool) – If true, the regression loss would be applied directly on decoded bounding boxes, converting both the predicted boxes and regression targets to absolute coordinates format. Defaults to False. It should be True when using IoULoss, GIoULoss, or DIoULoss in the bbox head.
train_cfg (
ConfigDict
or dict, Optional) – Training config of anchor head.test_cfg (
ConfigDict
or dict, Optional) – Testing config of anchor head.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], Optional) – Initialization config dict.
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Union[List[Tensor], Tensor]] [source]¶
Compute losses of the head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components. the dict has components below:
loss_cls (list[Tensor]): A list containing each feature map classification loss.
loss_bbox (list[Tensor]): A list containing each feature map regression loss.
loss_carl (Tensor): The loss of CARL.
- Return type
dict[str, Union[List[Tensor], Tensor]]
- class mmdet.models.dense_heads.RPNHead(in_channels: int, num_classes: int = 1, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'std': 0.01, 'type': 'Normal'}, num_convs: int = 1, **kwargs)[source]¶
Implementation of RPN head.
- Parameters
in_channels (int) – Number of channels in the input feature map.
num_classes (int) – Number of categories excluding the background category. Defaults to 1.
init_cfg (
ConfigDict
or list[ConfigDict
] or dict or list[dict]) – Initialization config dict.num_convs (int) – Number of convolution layers in the head. Defaults to 1.
- forward_single(x: Tensor) Tuple[Tensor, Tensor] [source]¶
Forward feature of a single scale level.
- Parameters
x (Tensor) – Features of a single scale level.
- Returns
cls_score (Tensor): Cls scores for a single scale level the channels number is num_base_priors * num_classes. bbox_pred (Tensor): Box energies / deltas for a single scale level, the channels number is num_base_priors * 4.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level, has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
(list[obj (batch_gt_instances_ignore) – InstanceData]): Batch of gt_instance. It usually includes
bboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
(list[obj – InstanceData], Optional): Batch of gt_instances_ignore. It includes
bboxes
attribute data that is ignored during training and testing.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.RTMDetHead(num_classes: int, in_channels: int, with_objectness: bool = True, act_cfg: Union[ConfigDict, dict] = {'type': 'ReLU'}, **kwargs)[source]¶
Detection Head of RTMDet.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
with_objectness (bool) – Whether to add an objectness branch. Defaults to True.
act_cfg (
ConfigDict
or dict) – Config dict for activation layer. Default: dict(type=’ReLU’)
- forward(feats: Tuple[Tensor, ...]) tuple [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
Usually a tuple of classification scores and bbox prediction - cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
- Return type
tuple
- get_anchors(featmap_sizes: List[tuple], batch_img_metas: List[dict], device: Union[device, str] = 'cuda') Tuple[List[List[Tensor]], List[List[Tensor]]] [source]¶
Get anchors according to feature map sizes.
- Parameters
featmap_sizes (list[tuple]) – Multi-level feature map sizes.
batch_img_metas (list[dict]) – Image meta info.
device (torch.device or str) – Device for returned tensors. Defaults to cuda.
- Returns
anchor_list (list[list[Tensor]]): Anchors of each image.
valid_flag_list (list[list[Tensor]]): Valid flags of each image.
- Return type
tuple
- get_targets(cls_scores: Tensor, bbox_preds: Tensor, anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs=True)[source]¶
Compute regression and classification targets for anchors in multiple images.
- Parameters
cls_scores (Tensor) – Classification predictions of images, a 3D-Tensor with shape [num_imgs, num_priors, num_classes].
bbox_preds (Tensor) – Decoded bboxes predictions of one image, a 3D-Tensor with shape [num_imgs, num_priors, 4] in [tl_x, tl_y, br_x, br_y] format.
anchor_list (list[list[Tensor]]) – Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]) – Multi level valid flags of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, )
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.unmap_outputs (bool) – Whether to map outputs back to the original set of anchors. Defaults to True.
- Returns
a tuple containing learning targets.
anchors_list (list[list[Tensor]]): Anchors of each level.
labels_list (list[Tensor]): Labels of each level.
label_weights_list (list[Tensor]): Label weights of each level.
bbox_targets_list (list[Tensor]): BBox targets of each level.
assign_metrics_list (list[Tensor]): alignment metrics of each level.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None)[source]¶
Compute losses of the head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Decoded box for each scale level with shape (N, num_anchors * 4, H, W) in [tl_x, tl_y, br_x, br_y] format.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_by_feat_single(cls_score: Tensor, bbox_pred: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, assign_metrics: Tensor, stride: List[int])[source]¶
Compute loss of a single scale level.
- Parameters
cls_score (Tensor) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor) – Decoded bboxes for each scale level with shape (N, num_anchors * 4, H, W).
labels (Tensor) – Labels of each anchors with shape (N, num_total_anchors).
label_weights (Tensor) – Label weights of each anchor with shape (N, num_total_anchors).
bbox_targets (Tensor) – BBox regression targets of each anchor with shape (N, num_total_anchors, 4).
assign_metrics (Tensor) – Assign metrics with shape (N, num_total_anchors).
stride (List[int]) – Downsample stride of the feature map.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.RTMDetInsHead(*args, num_prototypes: int = 8, dyconv_channels: int = 8, num_dyconvs: int = 3, mask_loss_stride: int = 4, loss_mask={'eps': 5e-06, 'loss_weight': 2.0, 'reduction': 'mean', 'type': 'DiceLoss'}, **kwargs)[source]¶
Detection Head of RTMDet-Ins.
- Parameters
num_prototypes (int) – Number of mask prototype features extracted from the mask head. Defaults to 8.
dyconv_channels (int) – Channel of the dynamic conv layers. Defaults to 8.
num_dyconvs (int) – Number of the dynamic convolution layers. Defaults to 3.
mask_loss_stride (int) – Down sample stride of the masks for loss computation. Defaults to 4.
loss_mask (
ConfigDict
or dict) – Config dict for mask loss.
- forward(feats: Tuple[Tensor, ...]) tuple [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
Usually a tuple of classification scores and bbox prediction - cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
kernel_preds (list[Tensor]): Dynamic conv kernels for all scale levels, each is a 4D-tensor, the channels number is num_gen_params.
mask_feat (Tensor): Output feature of the mask head. Each is a 4D-tensor, the channels number is num_prototypes.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], kernel_preds: List[Tensor], mask_feat: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None)[source]¶
Compute losses of the head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Decoded box for each scale level with shape (N, num_anchors * 4, H, W) in [tl_x, tl_y, br_x, br_y] format.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_mask_by_feat(mask_feats: Tensor, flatten_kernels: Tensor, sampling_results_list: list, batch_gt_instances: List[InstanceData]) Tensor [source]¶
Compute instance segmentation loss.
- Parameters
mask_feats (list[Tensor]) – Mask prototype features extracted from the mask head. Has shape (N, num_prototypes, H, W)
flatten_kernels (list[Tensor]) – Kernels of the dynamic conv layers. Has shape (N, num_instances, num_params)
sampling_results_list (list[
SamplingResults
]) – assignment results.batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.
- Returns
The mask loss tensor.
- Return type
Tensor
- parse_dynamic_params(flatten_kernels: Tensor) tuple [source]¶
Split kernel head prediction to conv weight and bias.
- predict_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], kernel_preds: List[Tensor], mask_feat: Tensor, score_factors: Optional[List[Tensor]] = None, batch_img_metas: Optional[List[dict]] = None, cfg: Optional[Union[ConfigDict, dict]] = None, rescale: bool = False, with_nms: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
Note: When score_factors is not None, the cls_scores are usually multiplied by it then obtain the real score used in NMS, such as CenterNess in FCOS, IoU branch in ATSS.
- Parameters
cls_scores (list[Tensor]) – Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W).
kernel_preds (list[Tensor]) – Kernel predictions of dynamic convs for all scale levels, each is a 4D-tensor, has shape (batch_size, num_params, H, W).
mask_feat (Tensor) – Mask prototype features extracted from the mask head, has shape (batch_size, num_prototypes, H, W).
score_factors (list[Tensor], optional) – Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, num_priors * 1, H, W). Defaults to None.
batch_img_metas (list[dict], Optional) – Batch image meta info. Defaults to None.
cfg (ConfigDict, optional) – Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
with_nms (bool) – If True, do nms before return boxes. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, h, w).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.RTMDetInsSepBNHead(num_classes: int, in_channels: int, share_conv: bool = True, with_objectness: bool = False, norm_cfg: Union[ConfigDict, dict] = {'requires_grad': True, 'type': 'BN'}, act_cfg: Union[ConfigDict, dict] = {'inplace': True, 'type': 'SiLU'}, pred_kernel_size: int = 1, **kwargs)[source]¶
Detection Head of RTMDet-Ins with sep-bn layers.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
share_conv (bool) – Whether to share conv layers between stages. Defaults to True.
norm_cfg (
ConfigDict
or dict)) – Config dict for normalization layer. Defaults to dict(type=’BN’).act_cfg (
ConfigDict
or dict)) – Config dict for activation layer. Defaults to dict(type=’SiLU’, inplace=True).pred_kernel_size (int) – Kernel size of prediction layer. Defaults to 1.
- forward(feats: Tuple[Tensor, ...]) tuple [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
Usually a tuple of classification scores and bbox prediction - cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
kernel_preds (list[Tensor]): Dynamic conv kernels for all scale levels, each is a 4D-tensor, the channels number is num_gen_params.
mask_feat (Tensor): Output feature of the mask head. Each is a 4D-tensor, the channels number is num_prototypes.
- Return type
tuple
- class mmdet.models.dense_heads.RTMDetSepBNHead(num_classes: int, in_channels: int, share_conv: bool = True, use_depthwise: bool = False, norm_cfg: Union[ConfigDict, dict] = {'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg: Union[ConfigDict, dict] = {'type': 'SiLU'}, pred_kernel_size: int = 1, exp_on_reg=False, **kwargs)[source]¶
RTMDetHead with separated BN layers and shared conv layers.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
share_conv (bool) – Whether to share conv layers between stages. Defaults to True.
use_depthwise (bool) – Whether to use depthwise separable convolution in head. Defaults to False.
norm_cfg (
ConfigDict
or dict)) – Config dict for normalization layer. Defaults to dict(type=’BN’, momentum=0.03, eps=0.001).act_cfg (
ConfigDict
or dict)) – Config dict for activation layer. Defaults to dict(type=’SiLU’).pred_kernel_size (int) – Kernel size of prediction layer. Defaults to 1.
- forward(feats: Tuple[Tensor, ...]) tuple [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
Usually a tuple of classification scores and bbox prediction
cls_scores (tuple[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes.
bbox_preds (tuple[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4.
- Return type
tuple
- class mmdet.models.dense_heads.RepPointsHead(num_classes: int, in_channels: int, point_feat_channels: int = 256, num_points: int = 9, gradient_mul: float = 0.1, point_strides: Sequence[int] = [8, 16, 32, 64, 128], point_base_scale: int = 4, loss_cls: Union[ConfigDict, dict] = {'alpha': 0.25, 'gamma': 2.0, 'loss_weight': 1.0, 'type': 'FocalLoss', 'use_sigmoid': True}, loss_bbox_init: Union[ConfigDict, dict] = {'beta': 0.1111111111111111, 'loss_weight': 0.5, 'type': 'SmoothL1Loss'}, loss_bbox_refine: Union[ConfigDict, dict] = {'beta': 0.1111111111111111, 'loss_weight': 1.0, 'type': 'SmoothL1Loss'}, use_grid_points: bool = False, center_init: bool = True, transform_method: str = 'moment', moment_mul: float = 0.01, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'reppoints_cls_out', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'}, **kwargs)[source]¶
RepPoint head.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
point_feat_channels (int) – Number of channels of points features.
num_points (int) – Number of points.
gradient_mul (float) – The multiplier to gradients from points refinement and recognition.
point_strides (Sequence[int]) – points strides.
point_base_scale (int) – bbox scale for assigning labels.
loss_cls (
ConfigDict
or dict) – Config of classification loss.loss_bbox_init (
ConfigDict
or dict) – Config of initial points loss.loss_bbox_refine (
ConfigDict
or dict) – Config of points loss in refinement.use_grid_points (bool) – If we use bounding box representation, the
box. (reppoints is represented as grid points on the bounding) –
center_init (bool) – Whether to use center point assignment.
transform_method (str) – The methods to transform RepPoints to bbox.
init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict]) – Initialization config dict.
- centers_to_bboxes(point_list: List[Tensor]) List[Tensor] [source]¶
Get bboxes according to center points.
Only used in
MaxIoUAssigner
.
- forward(feats: Tuple[Tensor]) Tuple[Tensor] [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
Usually contain classification scores and bbox predictions.
cls_scores (list[Tensor]): Box scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
- Return type
tuple
- gen_grid_from_reg(reg: Tensor, previous_boxes: Tensor) Tuple[Tensor] [source]¶
Base on the previous bboxes and regression values, we compute the regressed bboxes and generate the grids on the bboxes.
- Parameters
reg (Tensor) – the regression value to previous bboxes.
previous_boxes (Tensor) – previous bboxes.
- Returns
generate grids on the regressed bboxes.
- Return type
Tuple[Tensor]
- get_points(featmap_sizes: List[Tuple[int]], batch_img_metas: List[dict], device: str) tuple [source]¶
Get points according to feature map sizes.
- Parameters
featmap_sizes (list[tuple]) – Multi-level feature map sizes.
batch_img_metas (list[dict]) – Image meta info.
- Returns
points of each image, valid flags of each image
- Return type
tuple
- get_targets(proposals_list: List[Tensor], valid_flag_list: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, stage: str = 'init', unmap_outputs: bool = True, return_sampling_results: bool = False) tuple [source]¶
Compute corresponding GT box and classification targets for proposals.
- Parameters
proposals_list (list[Tensor]) – Multi level points/bboxes of each image.
valid_flag_list (list[Tensor]) – Multi level valid flags of each image.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.stage (str) – ‘init’ or ‘refine’. Generate target for init stage or refine stage.
unmap_outputs (bool) – Whether to map outputs back to the original set of anchors.
return_sampling_results (bool) – Whether to return the sampling results. Defaults to False.
- Returns
labels_list (list[Tensor]): Labels of each level.
label_weights_list (list[Tensor]): Label weights of each level.
bbox_gt_list (list[Tensor]): Ground truth bbox of each level.
proposals_list (list[Tensor]): Proposals(points/bboxes) of each level.
proposal_weights_list (list[Tensor]): Proposal weights of each level.
avg_factor (int): Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using PseudoSampler, avg_factor is usually equal to the number of positive priors.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], pts_preds_init: List[Tensor], pts_preds_refine: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level, each is a 4D-tensor, of shape (batch_size, num_classes, h, w).
pts_preds_init (list[Tensor]) – Points for each scale level, each is a 3D-tensor, of shape (batch_size, h_i * w_i, num_points * 2).
pts_preds_refine (list[Tensor]) – Points refined for each scale level, each is a 3D-tensor, of shape (batch_size, h_i * w_i, num_points * 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_by_feat_single(cls_score: Tensor, pts_pred_init: Tensor, pts_pred_refine: Tensor, labels: Tensor, label_weights, bbox_gt_init: Tensor, bbox_weights_init: Tensor, bbox_gt_refine: Tensor, bbox_weights_refine: Tensor, stride: int, avg_factor_init: int, avg_factor_refine: int) Tuple[Tensor] [source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
cls_score (Tensor) – Box scores for each scale level Has shape (N, num_classes, h_i, w_i).
pts_pred_init (Tensor) – Points of shape (batch_size, h_i * w_i, num_points * 2).
pts_pred_refine (Tensor) – Points refined of shape (batch_size, h_i * w_i, num_points * 2).
labels (Tensor) – Ground truth class indices with shape (batch_size, h_i * w_i).
label_weights (Tensor) – Label weights of shape (batch_size, h_i * w_i).
bbox_gt_init (Tensor) – BBox regression targets in the init stage of shape (batch_size, h_i * w_i, 4).
bbox_weights_init (Tensor) – BBox regression loss weights in the init stage of shape (batch_size, h_i * w_i, 4).
bbox_gt_refine (Tensor) – BBox regression targets in the refine stage of shape (batch_size, h_i * w_i, 4).
bbox_weights_refine (Tensor) – BBox regression loss weights in the refine stage of shape (batch_size, h_i * w_i, 4).
stride (int) – Point stride.
avg_factor_init (int) – Average factor that is used to average the loss in the init stage.
avg_factor_refine (int) – Average factor that is used to average the loss in the refine stage.
- Returns
loss components.
- Return type
Tuple[Tensor]
- offset_to_pts(center_list: List[Tensor], pred_list: List[Tensor]) List[Tensor] [source]¶
Change from point offset to point coordinate.
- points2bbox(pts: Tensor, y_first: bool = True) Tensor [source]¶
Converting the points set into bounding box.
- Parameters
pts (Tensor) – the input points sets (fields), each points set (fields) is represented as 2n scalar.
y_first (bool) – if y_first=True, the point set is represented as [y1, x1, y2, x2 … yn, xn], otherwise the point set is represented as [x1, y1, x2, y2 … xn, yn]. Defaults to True.
- Returns
each points set is converting to a bbox [x1, y1, x2, y2].
- Return type
Tensor
- class mmdet.models.dense_heads.RetinaHead(num_classes, in_channels, stacked_convs=4, conv_cfg=None, norm_cfg=None, anchor_generator={'octave_base_scale': 4, 'ratios': [0.5, 1.0, 2.0], 'scales_per_octave': 3, 'strides': [8, 16, 32, 64, 128], 'type': 'AnchorGenerator'}, init_cfg={'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'retina_cls', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'}, **kwargs)[source]¶
An anchor-based head used in RetinaNet.
The head contains two subnetworks. The first classifies anchor boxes and the second regresses deltas for the anchors.
Example
>>> import torch >>> self = RetinaHead(11, 7) >>> x = torch.rand(1, 7, 32, 32) >>> cls_score, bbox_pred = self.forward_single(x) >>> # Each anchor predicts a score for each class except background >>> cls_per_anchor = cls_score.shape[1] / self.num_anchors >>> box_per_anchor = bbox_pred.shape[1] / self.num_anchors >>> assert cls_per_anchor == (self.num_classes) >>> assert box_per_anchor == 4
- forward_single(x)[source]¶
Forward feature of a single scale level.
- Parameters
x (Tensor) – Features of a single scale level.
- Returns
- cls_score (Tensor): Cls scores for a single scale level
the channels number is num_anchors * num_classes.
- bbox_pred (Tensor): Box energies / deltas for a single scale
level, the channels number is num_anchors * 4.
- Return type
tuple
- class mmdet.models.dense_heads.RetinaSepBNHead(num_classes: int, num_ins: int, in_channels: int, stacked_convs: int = 4, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, **kwargs)[source]¶
“RetinaHead with separate BN.
In RetinaHead, conv/norm layers are shared across different FPN levels, while in RetinaSepBNHead, conv layers are shared across different FPN levels, but BN layers are separated.
- forward(feats: Tuple[Tensor]) tuple [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
Usually a tuple of classification scores and bbox prediction
cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4.
- Return type
tuple
- class mmdet.models.dense_heads.SABLRetinaHead(num_classes: int, in_channels: int, stacked_convs: int = 4, feat_channels: int = 256, approx_anchor_generator: Union[ConfigDict, dict] = {'octave_base_scale': 4, 'ratios': [0.5, 1.0, 2.0], 'scales_per_octave': 3, 'strides': [8, 16, 32, 64, 128], 'type': 'AnchorGenerator'}, square_anchor_generator: Union[ConfigDict, dict] = {'ratios': [1.0], 'scales': [4], 'strides': [8, 16, 32, 64, 128], 'type': 'AnchorGenerator'}, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, bbox_coder: Union[ConfigDict, dict] = {'num_buckets': 14, 'scale_factor': 3.0, 'type': 'BucketingBBoxCoder'}, reg_decoded_bbox: bool = False, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, loss_cls: Union[ConfigDict, dict] = {'alpha': 0.25, 'gamma': 2.0, 'loss_weight': 1.0, 'type': 'FocalLoss', 'use_sigmoid': True}, loss_bbox_cls: Union[ConfigDict, dict] = {'loss_weight': 1.5, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_bbox_reg: Union[ConfigDict, dict] = {'beta': 0.1111111111111111, 'loss_weight': 1.5, 'type': 'SmoothL1Loss'}, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'retina_cls', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'})[source]¶
Side-Aware Boundary Localization (SABL) for RetinaNet.
The anchor generation, assigning and sampling in SABLRetinaHead are the same as GuidedAnchorHead for guided anchoring.
Please refer to https://arxiv.org/abs/1912.04260 for more details.
- Parameters
num_classes (int) – Number of classes.
in_channels (int) – Number of channels in the input feature map.
stacked_convs (int) – Number of Convs for classification and regression branches. Defaults to 4.
feat_channels (int) – Number of hidden channels. Defaults to 256.
approx_anchor_generator (
ConfigType
or dict) – Config dict for approx generator.square_anchor_generator (
ConfigDict
or dict) – Config dict for square generator.conv_cfg (
ConfigDict
or dict, optional) – Config dict for ConvModule. Defaults to None.norm_cfg (
ConfigDict
or dict, optional) – Config dict for Norm Layer. Defaults to None.bbox_coder (
ConfigDict
or dict) – Config dict for bbox coder.reg_decoded_bbox (bool) – If true, the regression loss would be applied directly on decoded bounding boxes, converting both the predicted boxes and regression targets to absolute coordinates format. Default False. It should be
True
when usingIoULoss
,GIoULoss
, orDIoULoss
in the bbox head.train_cfg (
ConfigDict
or dict, optional) – Training config of SABLRetinaHead.test_cfg (
ConfigDict
or dict, optional) – Testing config of SABLRetinaHead.loss_cls (
ConfigDict
or dict) – Config of classification loss.loss_bbox_cls (
ConfigDict
or dict) – Config of classification loss for bbox branch.loss_bbox_reg (
ConfigDict
or dict) – Config of regression loss for bbox branch.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict.
- forward(feats: List[Tensor]) Tuple[List[Tensor]] [source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- get_anchors(featmap_sizes: List[tuple], img_metas: List[dict], device: Union[device, str] = 'cuda') Tuple[List[List[Tensor]], List[List[Tensor]]] [source]¶
Get squares according to feature map sizes and guided anchors.
- Parameters
featmap_sizes (list[tuple]) – Multi-level feature map sizes.
img_metas (list[dict]) – Image meta info.
device (torch.device | str) – device for returned tensors
- Returns
square approxs of each image
- Return type
tuple
- get_targets(approx_list: List[List[Tensor]], inside_flag_list: List[List[Tensor]], square_list: List[List[Tensor]], batch_gt_instances: List[InstanceData], batch_img_metas, batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs=True) tuple [source]¶
Compute bucketing targets.
- Parameters
approx_list (list[list[Tensor]]) – Multi level approxs of each image.
inside_flag_list (list[list[Tensor]]) – Multi level inside flags of each image.
square_list (list[list[Tensor]]) – Multi level squares of each image.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.unmap_outputs (bool) – Whether to map outputs back to the original set of anchors. Defaults to True.
- Returns
Returns a tuple containing learning targets.
labels_list (list[Tensor]): Labels of each level.
label_weights_list (list[Tensor]): Label weights of each level.
bbox_cls_targets_list (list[Tensor]): BBox cls targets of each level.
bbox_cls_weights_list (list[Tensor]): BBox cls weights of each level.
bbox_reg_targets_list (list[Tensor]): BBox reg targets of each level.
bbox_reg_weights_list (list[Tensor]): BBox reg weights of each level.
num_total_pos (int): Number of positive samples in all images.
num_total_neg (int): Number of negative samples in all images.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_by_feat_single(cls_score: Tensor, bbox_pred: Tensor, labels: Tensor, label_weights: Tensor, bbox_cls_targets: Tensor, bbox_cls_weights: Tensor, bbox_reg_targets: Tensor, bbox_reg_weights: Tensor, avg_factor: float) Tuple[Tensor] [source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
cls_score (Tensor) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
labels (Tensor) – Labels in a single image.
label_weights (Tensor) – Label weights in a single level.
bbox_cls_targets (Tensor) – BBox cls targets in a single level.
bbox_cls_weights (Tensor) – BBox cls weights in a single level.
bbox_reg_targets (Tensor) – BBox reg targets in a single level.
bbox_reg_weights (Tensor) – BBox reg weights in a single level.
avg_factor (int) – Average factor that is used to average the loss.
- Returns
loss components.
- Return type
tuple
- predict_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_img_metas: List[dict], cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
Note: When score_factors is not None, the cls_scores are usually multiplied by it then obtain the real score used in NMS, such as CenterNess in FCOS, IoU branch in ATSS.
- Parameters
cls_scores (list[Tensor]) – Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W).
batch_img_metas (list[dict], Optional) – Batch image meta info.
cfg (
ConfigDict
, optional) – Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None.rescale (bool) – If True, return boxes in original image space. Defaults to False.
with_nms (bool) – If True, do nms before return boxes. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.SOLOHead(num_classes: int, in_channels: int, feat_channels: int = 256, stacked_convs: int = 4, strides: tuple = (4, 8, 16, 32, 64), scale_ranges: tuple = ((8, 32), (16, 64), (32, 128), (64, 256), (128, 512)), pos_scale: float = 0.2, num_grids: list = [40, 36, 24, 16, 12], cls_down_index: int = 0, loss_mask: Union[ConfigDict, dict] = {'loss_weight': 3.0, 'type': 'DiceLoss', 'use_sigmoid': True}, loss_cls: Union[ConfigDict, dict] = {'alpha': 0.25, 'gamma': 2.0, 'loss_weight': 1.0, 'type': 'FocalLoss', 'use_sigmoid': True}, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 32, 'requires_grad': True, 'type': 'GN'}, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = [{'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01}, {'type': 'Normal', 'std': 0.01, 'bias_prob': 0.01, 'override': {'name': 'conv_mask_list'}}, {'type': 'Normal', 'std': 0.01, 'bias_prob': 0.01, 'override': {'name': 'conv_cls'}}])[source]¶
SOLO mask head used in `SOLO: Segmenting Objects by Locations.
<https://arxiv.org/abs/1912.04488>`_
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
feat_channels (int) – Number of hidden channels. Used in child classes. Defaults to 256.
stacked_convs (int) – Number of stacking convs of the head. Defaults to 4.
strides (tuple) – Downsample factor of each feature map.
scale_ranges (tuple[tuple[int, int]]) – Area range of multiple level masks, in the format [(min1, max1), (min2, max2), …]. A range of (16, 64) means the area range between (16, 64).
pos_scale (float) – Constant scale factor to control the center region.
num_grids (list[int]) – Divided image into a uniform grids, each feature map has a different grid value. The number of output channels is grid ** 2. Defaults to [40, 36, 24, 16, 12].
cls_down_index (int) – The index of downsample operation in classification branch. Defaults to 0.
loss_mask (dict) – Config of mask loss.
loss_cls (dict) – Config of classification loss.
norm_cfg (dict) – Dictionary to construct and config norm layer. Defaults to norm_cfg=dict(type=’GN’, num_groups=32, requires_grad=True).
train_cfg (dict) – Training config of head.
test_cfg (dict) – Testing config of head.
init_cfg (dict or list[dict], optional) – Initialization config dict.
- forward(x: Tuple[Tensor]) tuple [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of classification scores and mask prediction.
mlvl_mask_preds (list[Tensor]): Multi-level mask prediction. Each element in the list has shape (batch_size, num_grids**2 ,h ,w).
mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids ,num_grids).
- Return type
tuple
- loss_by_feat(mlvl_mask_preds: List[Tensor], mlvl_cls_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], **kwargs) dict [source]¶
Calculate the loss based on the features extracted by the mask head.
- Parameters
mlvl_mask_preds (list[Tensor]) – Multi-level mask prediction. Each element in the list has shape (batch_size, num_grids**2 ,h ,w).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,masks
, andlabels
attributes.batch_img_metas (list[dict]) – Meta information of multiple images.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- predict_by_feat(mlvl_mask_preds: List[Tensor], mlvl_cls_scores: List[Tensor], batch_img_metas: List[dict], **kwargs) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into mask results.
- Parameters
mlvl_mask_preds (list[Tensor]) – Multi-level mask prediction. Each element in the list has shape (batch_size, num_grids**2 ,h ,w).
mlvl_cls_scores (list[Tensor]) – Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids ,num_grids).
batch_img_metas (list[dict]) – Meta information of all images.
- Returns
Processed results of multiple images.Each
InstanceData
usually contains following keys.scores (Tensor): Classification scores, has shape (num_instance,).
labels (Tensor): Has shape (num_instances,).
masks (Tensor): Processed mask results, has shape (num_instances, h, w).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.SOLOV2Head(*args, mask_feature_head: Union[ConfigDict, dict], dynamic_conv_size: int = 1, dcn_cfg: Optional[Union[ConfigDict, dict]] = None, dcn_apply_to_all_conv: bool = True, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = [{'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01}, {'type': 'Normal', 'std': 0.01, 'bias_prob': 0.01, 'override': {'name': 'conv_cls'}}], **kwargs)[source]¶
SOLOv2 mask head used in SOLOv2: Dynamic and Fast Instance Segmentation.
- Parameters
mask_feature_head (dict) – Config of SOLOv2MaskFeatHead.
dynamic_conv_size (int) – Dynamic Conv kernel size. Defaults to 1.
dcn_cfg (dict) – Dcn conv configurations in kernel_convs and cls_conv. Defaults to None.
dcn_apply_to_all_conv (bool) – Whether to use dcn in every layer of kernel_convs and cls_convs, or only the last layer. It shall be set True for the normal version of SOLOv2 and False for the light-weight version. Defaults to True.
init_cfg (dict or list[dict], optional) – Initialization config dict.
- forward(x)[source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of classification scores, mask prediction, and mask features.
mlvl_kernel_preds (list[Tensor]): Multi-level dynamic kernel prediction. The kernel is used to generate instance segmentation masks by dynamic convolution. Each element in the list has shape (batch_size, kernel_out_channels, num_grids, num_grids).
mlvl_cls_preds (list[Tensor]): Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids, num_grids).
mask_feats (Tensor): Unified mask feature map used to generate instance segmentation masks by dynamic convolution. Has shape (batch_size, mask_out_channels, h, w).
- Return type
tuple
- loss_by_feat(mlvl_kernel_preds: List[Tensor], mlvl_cls_preds: List[Tensor], mask_feats: Tensor, batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], **kwargs) dict [source]¶
Calculate the loss based on the features extracted by the mask head.
- Parameters
mlvl_kernel_preds (list[Tensor]) – Multi-level dynamic kernel prediction. The kernel is used to generate instance segmentation masks by dynamic convolution. Each element in the list has shape (batch_size, kernel_out_channels, num_grids, num_grids).
mlvl_cls_preds (list[Tensor]) – Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids, num_grids).
mask_feats (Tensor) – Unified mask feature map used to generate instance segmentation masks by dynamic convolution. Has shape (batch_size, mask_out_channels, h, w).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,masks
, andlabels
attributes.batch_img_metas (list[dict]) – Meta information of multiple images.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- predict_by_feat(mlvl_kernel_preds: List[Tensor], mlvl_cls_scores: List[Tensor], mask_feats: Tensor, batch_img_metas: List[dict], **kwargs) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into mask results.
- Parameters
mlvl_kernel_preds (list[Tensor]) – Multi-level dynamic kernel prediction. The kernel is used to generate instance segmentation masks by dynamic convolution. Each element in the list has shape (batch_size, kernel_out_channels, num_grids, num_grids).
mlvl_cls_scores (list[Tensor]) – Multi-level scores. Each element in the list has shape (batch_size, num_classes, num_grids, num_grids).
mask_feats (Tensor) – Unified mask feature map used to generate instance segmentation masks by dynamic convolution. Has shape (batch_size, mask_out_channels, h, w).
batch_img_metas (list[dict]) – Meta information of all images.
- Returns
Processed results of multiple images.Each
InstanceData
usually contains following keys.scores (Tensor): Classification scores, has shape (num_instance,).
labels (Tensor): Has shape (num_instances,).
masks (Tensor): Processed mask results, has shape (num_instances, h, w).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.SSDHead(num_classes: int = 80, in_channels: Sequence[int] = (512, 1024, 512, 256, 256, 256), stacked_convs: int = 0, feat_channels: int = 256, use_depthwise: bool = False, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, act_cfg: Optional[Union[ConfigDict, dict]] = None, anchor_generator: Union[ConfigDict, dict] = {'basesize_ratio_range': (0.1, 0.9), 'input_size': 300, 'ratios': ([2], [2, 3], [2, 3], [2, 3], [2], [2]), 'scale_major': False, 'strides': [8, 16, 32, 64, 100, 300], 'type': 'SSDAnchorGenerator'}, bbox_coder: Union[ConfigDict, dict] = {'clip_border': True, 'target_means': [0.0, 0.0, 0.0, 0.0], 'target_stds': [1.0, 1.0, 1.0, 1.0], 'type': 'DeltaXYWHBBoxCoder'}, reg_decoded_bbox: bool = False, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'bias': 0, 'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'})[source]¶
Implementation of SSD head
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (Sequence[int]) – Number of channels in the input feature map.
stacked_convs (int) – Number of conv layers in cls and reg tower. Defaults to 0.
feat_channels (int) – Number of hidden channels when stacked_convs > 0. Defaults to 256.
use_depthwise (bool) – Whether to use DepthwiseSeparableConv. Defaults to False.
conv_cfg (
ConfigDict
or dict, Optional) – Dictionary to construct and config conv layer. Defaults to None.norm_cfg (
ConfigDict
or dict, Optional) – Dictionary to construct and config norm layer. Defaults to None.act_cfg (
ConfigDict
or dict, Optional) – Dictionary to construct and config activation layer. Defaults to None.anchor_generator (
ConfigDict
or dict) – Config dict for anchor generator.bbox_coder (
ConfigDict
or dict) – Config of bounding box coder.reg_decoded_bbox (bool) – If true, the regression loss would be applied directly on decoded bounding boxes, converting both the predicted boxes and regression targets to absolute coordinates format. Defaults to False. It should be True when using IoULoss, GIoULoss, or DIoULoss in the bbox head.
train_cfg (
ConfigDict
or dict, Optional) – Training config of anchor head.test_cfg (
ConfigDict
or dict, Optional) – Testing config of anchor head.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], Optional) – Initialization config dict.
- forward(x: Tuple[Tensor]) Tuple[List[Tensor], List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of cls_scores list and bbox_preds list.
cls_scores (list[Tensor]): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_anchors * num_classes.
bbox_preds (list[Tensor]): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_anchors * 4.
- Return type
tuple[list[Tensor], list[Tensor]]
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, List[Tensor]] [source]¶
Compute losses of the head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components. the dict has components below:
loss_cls (list[Tensor]): A list containing each feature map classification loss.
loss_bbox (list[Tensor]): A list containing each feature map regression loss.
- Return type
dict[str, list[Tensor]]
- loss_by_feat_single(cls_score: Tensor, bbox_pred: Tensor, anchor: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, bbox_weights: Tensor, avg_factor: int) Tuple[Tensor, Tensor] [source]¶
Compute loss of a single image.
- Parameters
cls_score (Tensor) – Box scores for eachimage Has shape (num_total_anchors, num_classes).
bbox_pred (Tensor) – Box energies / deltas for each image level with shape (num_total_anchors, 4).
anchors (Tensor) – Box reference for each scale level with shape (num_total_anchors, 4).
labels (Tensor) – Labels of each anchors with shape (num_total_anchors,).
label_weights (Tensor) – Label weights of each anchor with shape (num_total_anchors,)
bbox_targets (Tensor) – BBox regression targets of each anchor with shape (num_total_anchors, 4).
bbox_weights (Tensor) – BBox regression loss weights of each anchor with shape (num_total_anchors, 4).
avg_factor (int) – Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using PseudoSampler, avg_factor is usually equal to the number of positive priors.
- Returns
A tuple of cls loss and bbox loss of one feature map.
- Return type
Tuple[Tensor, Tensor]
- class mmdet.models.dense_heads.StageCascadeRPNHead(in_channels: int, anchor_generator: Union[ConfigDict, dict] = {'ratios': [1.0], 'scales': [8], 'strides': [4, 8, 16, 32, 64], 'type': 'AnchorGenerator'}, adapt_cfg: Union[ConfigDict, dict] = {'dilation': 3, 'type': 'dilation'}, bridged_feature: bool = False, with_cls: bool = True, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, **kwargs)[source]¶
Stage of CascadeRPNHead.
- Parameters
in_channels (int) – Number of channels in the input feature map.
anchor_generator (
ConfigDict
or dict) – anchor generator config.adapt_cfg (
ConfigDict
or dict) – adaptation config.bridged_feature (bool) – whether update rpn feature. Defaults to False.
with_cls (bool) – whether use classification branch. Defaults to True.
- :param init_cfg
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- anchor_offset(anchor_list: List[List[Tensor]], anchor_strides: List[int], featmap_sizes: List[Tuple[int, int]]) List[Tensor] [source]¶
Get offset for deformable conv based on anchor shape NOTE: currently support deformable kernel_size=3 and dilation=1
- Parameters
anchor_list (list[list[tensor])) – [NI, NLVL, NA, 4] list of multi-level anchors
anchor_strides (list[int]) – anchor stride of each level
- Returns
offset of DeformConv kernel with shapes of [NLVL, NA, 2, 18].
- Return type
list[tensor]
- forward(feats: List[Tensor], offset_list: Optional[List[Tensor]] = None) Tuple[List[Tensor]] [source]¶
Forward function.
- get_targets(anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], featmap_sizes: List[Tuple[int, int]], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, return_sampling_results: bool = False) tuple [source]¶
Compute regression and classification targets for anchors.
- Parameters
anchor_list (list[list[Tensor]]) – Multi level anchors of each image.
valid_flag_list (list[list[Tensor]]) – Multi level valid flags of each image.
featmap_sizes (list[Tuple[int, int]]) – Feature map size each level.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.return_sampling_results (bool) – Whether to return the sampling results. Defaults to False.
- Returns
labels_list (list[Tensor]): Labels of each level.
label_weights_list (list[Tensor]): Label weights of each level.
bbox_targets_list (list[Tensor]): BBox targets of each level.
bbox_weights_list (list[Tensor]): BBox weights of each level.
avg_factor (int): Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using
PseudoSampler
,avg_factor
is usually equal to the number of positive priors.
- Return type
tuple
- loss(x: Tuple[Tensor], batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_and_predict(x: Tuple[Tensor], batch_data_samples: List[DetDataSample], proposal_cfg: Optional[ConfigDict] = None) Tuple[dict, List[InstanceData]] [source]¶
Perform forward propagation of the head, then calculate loss and predictions from the features and data samples.
- Parameters
x (tuple[Tensor]) – Features from FPN.
batch_data_samples (list[
DetDataSample
]) – Each item contains the meta information of each image and corresponding annotations.( (proposal_cfg) – obj`ConfigDict`, optional): Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None.
- Returns
the return value is a tuple contains:
losses: (dict[str, Tensor]): A dictionary of loss components.
predictions (list[
InstanceData
]): Detection results of each image after the post process.
- Return type
tuple
- loss_by_feat(anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) Dict[str, Tensor] [source]¶
Compute losses of the head.
- Parameters
anchor_list (list[list[Tensor]]) – Multi level anchors of each image.
valid_flag_list (list[list[Tensor]]) – Multi level valid flags of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, )
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_by_feat_single(cls_score: Tensor, bbox_pred: Tensor, anchors: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, bbox_weights: Tensor, avg_factor: int) tuple [source]¶
Loss function on single scale.
- predict(x: Tuple[Tensor], batch_data_samples: List[DetDataSample], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the detection head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Multi-level features from the upstream network, each is a 4D-tensor.
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
InstanceData]: Detection results of each image after the post process.
- Return type
list[obj
- predict_by_feat(anchor_list: List[List[Tensor]], cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_img_metas: List[dict], cfg: Optional[ConfigDict] = None, rescale: bool = False) List[InstanceData] [source]¶
Get proposal predict. Overriding to enable input
anchor_list
from outside.- Parameters
anchor_list (list[list[Tensor]]) – Multi level anchors of each image.
cls_scores (list[Tensor]) – Classification scores for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W).
batch_img_metas (list[dict], Optional) – Image meta info.
cfg (
ConfigDict
, optional) – Test / postprocessing configuration, if None, test_cfg would be used.rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- refine_bboxes(anchor_list: List[List[Tensor]], bbox_preds: List[Tensor], img_metas: List[dict]) List[List[Tensor]] [source]¶
Refine bboxes through stages.
- region_targets(anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], featmap_sizes: List[Tuple[int, int]], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, return_sampling_results: bool = False) tuple [source]¶
Compute regression and classification targets for anchors when using RegionAssigner.
- Parameters
anchor_list (list[list[Tensor]]) – Multi level anchors of each image.
valid_flag_list (list[list[Tensor]]) – Multi level valid flags of each image.
featmap_sizes (list[Tuple[int, int]]) – Feature map size each level.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
labels_list (list[Tensor]): Labels of each level.
label_weights_list (list[Tensor]): Label weights of each level.
bbox_targets_list (list[Tensor]): BBox targets of each level.
bbox_weights_list (list[Tensor]): BBox weights of each level.
avg_factor (int): Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using
PseudoSampler
,avg_factor
is usually equal to the number of positive priors.
- Return type
tuple
- class mmdet.models.dense_heads.TOODHead(num_classes: int, in_channels: int, num_dcn: int = 0, anchor_type: str = 'anchor_free', initial_loss_cls: Union[ConfigDict, dict] = {'activated': True, 'alpha': 0.25, 'gamma': 2.0, 'loss_weight': 1.0, 'type': 'FocalLoss', 'use_sigmoid': True}, **kwargs)[source]¶
TOODHead used in `TOOD: Task-aligned One-stage Object Detection.
<https://arxiv.org/abs/2108.07755>`_.
TOOD uses Task-aligned head (T-head) and is optimized by Task Alignment Learning (TAL).
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
num_dcn (int) – Number of deformable convolution in the head. Defaults to 0.
anchor_type (str) – If set to
anchor_free
, the head will use centers to regress bboxes. If set toanchor_based
, the head will regress bboxes based on anchors. Defaults toanchor_free
.initial_loss_cls (
ConfigDict
or dict) – Config of initial loss.
Example
>>> self = TOODHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_score, bbox_pred = self.forward(feats) >>> assert len(cls_score) == len(self.scales)
- anchor_center(anchors: Tensor) Tensor [source]¶
Get anchor centers from anchors.
- Parameters
anchors (Tensor) – Anchor list with shape (N, 4), “xyxy” format.
- Returns
Anchor centers with shape (N, 2), “xy” format.
- Return type
Tensor
- deform_sampling(feat: Tensor, offset: Tensor) Tensor [source]¶
Sampling the feature x according to offset.
- Parameters
feat (Tensor) – Feature
offset (Tensor) – Spatial offset for feature sampling
- forward(feats: Tuple[Tensor]) Tuple[List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
feats (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
- Usually a tuple of classification scores and bbox prediction
- cls_scores (list[Tensor]): Classification scores for all scale
levels, each is a 4D-tensor, the channels number is num_anchors * num_classes.
- bbox_preds (list[Tensor]): Decoded box for all scale levels,
each is a 4D-tensor, the channels number is num_anchors * 4. In [tl_x, tl_y, br_x, br_y] format.
- Return type
tuple
- get_targets(cls_scores: List[List[Tensor]], bbox_preds: List[List[Tensor]], anchor_list: List[List[Tensor]], valid_flag_list: List[List[Tensor]], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs: bool = True) tuple [source]¶
Compute regression and classification targets for anchors in multiple images.
- Parameters
cls_scores (list[list[Tensor]]) – Classification predictions of images, a 3D-Tensor with shape [num_imgs, num_priors, num_classes].
bbox_preds (list[list[Tensor]]) – Decoded bboxes predictions of one image, a 3D-Tensor with shape [num_imgs, num_priors, 4] in [tl_x, tl_y, br_x, br_y] format.
anchor_list (list[list[Tensor]]) – Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]) – Multi level valid flags of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_anchors, )
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.unmap_outputs (bool) – Whether to map outputs back to the original set of anchors.
- Returns
a tuple containing learning targets.
anchors_list (list[list[Tensor]]): Anchors of each level.
labels_list (list[Tensor]): Labels of each level.
label_weights_list (list[Tensor]): Label weights of each level.
bbox_targets_list (list[Tensor]): BBox targets of each level.
norm_alignment_metrics_list (list[Tensor]): Normalized alignment metrics of each level.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Decoded box for each scale level with shape (N, num_anchors * 4, H, W) in [tl_x, tl_y, br_x, br_y] format.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- loss_by_feat_single(anchors: Tensor, cls_score: Tensor, bbox_pred: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, alignment_metrics: Tensor, stride: Tuple[int, int]) dict [source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
anchors (Tensor) – Box reference for each scale level with shape (N, num_total_anchors, 4).
cls_score (Tensor) – Box scores for each scale level Has shape (N, num_anchors * num_classes, H, W).
bbox_pred (Tensor) – Decoded bboxes for each scale level with shape (N, num_anchors * 4, H, W).
labels (Tensor) – Labels of each anchors with shape (N, num_total_anchors).
label_weights (Tensor) – Label weights of each anchor with shape (N, num_total_anchors).
bbox_targets (Tensor) – BBox regression targets of each anchor with shape (N, num_total_anchors, 4).
alignment_metrics (Tensor) – Alignment metrics with shape (N, num_total_anchors).
stride (Tuple[int, int]) – Downsample stride of the feature map.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.dense_heads.VFNetHead(num_classes: int, in_channels: int, regress_ranges: Sequence[Tuple[int, int]] = ((-1, 64), (64, 128), (128, 256), (256, 512), (512, 100000000.0)), center_sampling: bool = False, center_sample_radius: float = 1.5, sync_num_pos: bool = True, gradient_mul: float = 0.1, bbox_norm_type: str = 'reg_denom', loss_cls_fl: Union[ConfigDict, dict] = {'alpha': 0.25, 'gamma': 2.0, 'loss_weight': 1.0, 'type': 'FocalLoss', 'use_sigmoid': True}, use_vfl: bool = True, loss_cls: Union[ConfigDict, dict] = {'alpha': 0.75, 'gamma': 2.0, 'iou_weighted': True, 'loss_weight': 1.0, 'type': 'VarifocalLoss', 'use_sigmoid': True}, loss_bbox: Union[ConfigDict, dict] = {'loss_weight': 1.5, 'type': 'GIoULoss'}, loss_bbox_refine: Union[ConfigDict, dict] = {'loss_weight': 2.0, 'type': 'GIoULoss'}, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 32, 'requires_grad': True, 'type': 'GN'}, use_atss: bool = True, reg_decoded_bbox: bool = True, anchor_generator: Union[ConfigDict, dict] = {'center_offset': 0.0, 'octave_base_scale': 8, 'ratios': [1.0], 'scales_per_octave': 1, 'strides': [8, 16, 32, 64, 128], 'type': 'AnchorGenerator'}, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'override': {'bias_prob': 0.01, 'name': 'vfnet_cls', 'std': 0.01, 'type': 'Normal'}, 'std': 0.01, 'type': 'Normal'}, **kwargs)[source]¶
Head of `VarifocalNet (VFNet): An IoU-aware Dense Object Detector.<https://arxiv.org/abs/2008.13367>`_.
The VFNet predicts IoU-aware classification scores which mix the object presence confidence and object localization accuracy as the detection score. It is built on the FCOS architecture and uses ATSS for defining positive/negative training examples. The VFNet is trained with Varifocal Loss and empolys star-shaped deformable convolution to extract features for a bbox.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
regress_ranges (Sequence[Tuple[int, int]]) – Regress range of multiple level points.
center_sampling (bool) – If true, use center sampling. Defaults to False.
center_sample_radius (float) – Radius of center sampling. Defaults to 1.5.
sync_num_pos (bool) – If true, synchronize the number of positive examples across GPUs. Defaults to True
gradient_mul (float) – The multiplier to gradients from bbox refinement and recognition. Defaults to 0.1.
bbox_norm_type (str) – The bbox normalization type, ‘reg_denom’ or ‘stride’. Defaults to reg_denom
loss_cls_fl (
ConfigDict
or dict) – Config of focal loss.use_vfl (bool) – If true, use varifocal loss for training. Defaults to True.
loss_cls (
ConfigDict
or dict) – Config of varifocal loss.loss_bbox (
ConfigDict
or dict) – Config of localization loss, GIoU Loss.loss_bbox – Config of localization refinement loss, GIoU Loss.
norm_cfg (
ConfigDict
or dict) – dictionary to construct and config norm layer. Defaults to norm_cfg=dict(type=’GN’, num_groups=32, requires_grad=True).use_atss (bool) – If true, use ATSS to define positive/negative examples. Defaults to True.
anchor_generator (
ConfigDict
or dict) – Config of anchor generator for ATSS.
:param init_cfg (
ConfigDict
or dict or list[dict] or: list[ConfigDict
]): Initialization config dict.Example
>>> self = VFNetHead(11, 7) >>> feats = [torch.rand(1, 7, s, s) for s in [4, 8, 16, 32, 64]] >>> cls_score, bbox_pred, bbox_pred_refine= self.forward(feats) >>> assert len(cls_score) == len(self.scales)
- forward(x: Tuple[Tensor]) Tuple[List[Tensor]] [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
cls_scores (list[Tensor]): Box iou-aware scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes.
bbox_preds (list[Tensor]): Box offsets for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
bbox_preds_refine (list[Tensor]): Refined Box offsets for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
- Return type
tuple
- forward_single(x: Tensor, scale: Scale, scale_refine: Scale, stride: int, reg_denom: int) tuple [source]¶
Forward features of a single scale level.
- Parameters
x (Tensor) – FPN feature maps of the specified stride.
( (scale_refine) – obj: mmcv.cnn.Scale): Learnable scale module to resize the bbox prediction.
( – obj: mmcv.cnn.Scale): Learnable scale module to resize the refined bbox prediction.
stride (int) – The corresponding stride for feature maps, used to normalize the bbox prediction when bbox_norm_type = ‘stride’.
reg_denom (int) – The corresponding regression range for feature maps, only used to normalize the bbox prediction when bbox_norm_type = ‘reg_denom’.
- Returns
iou-aware cls scores for each box, bbox predictions and refined bbox predictions of input feature maps.
- Return type
tuple
- get_anchors(featmap_sizes: List[Tuple], batch_img_metas: List[dict], device: str = 'cuda') tuple [source]¶
Get anchors according to feature map sizes.
- Parameters
featmap_sizes (list[tuple]) – Multi-level feature map sizes.
batch_img_metas (list[dict]) – Image meta info.
device (str) – Device for returned tensors
- Returns
anchor_list (list[Tensor]): Anchors of each image.
valid_flag_list (list[Tensor]): Valid flags of each image.
- Return type
tuple
- get_atss_targets(cls_scores: List[Tensor], mlvl_points: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) tuple [source]¶
A wrapper for computing ATSS targets for points in multiple images.
- Parameters
cls_scores (list[Tensor]) – Box iou-aware scores for each scale level with shape (N, num_points * num_classes, H, W).
mlvl_points (list[Tensor]) – Points of each fpn level, each has shape (num_points, 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
labels_list (list[Tensor]): Labels of each level.
label_weights (Tensor): Label weights of all levels.
bbox_targets_list (list[Tensor]): Regression targets of each level, (l, t, r, b).
bbox_weights (Tensor): Bbox weights of all levels.
- Return type
tuple
- get_fcos_targets(points: List[Tensor], batch_gt_instances: List[InstanceData]) tuple [source]¶
Compute FCOS regression and classification targets for points in multiple images.
- Parameters
points (list[Tensor]) – Points of each fpn level, each has shape (num_points, 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.
- Returns
labels (list[Tensor]): Labels of each level.
label_weights: None, to be compatible with ATSS targets.
bbox_targets (list[Tensor]): BBox targets of each level.
bbox_weights: None, to be compatible with ATSS targets.
- Return type
tuple
- get_targets(cls_scores: List[Tensor], mlvl_points: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) tuple [source]¶
A wrapper for computing ATSS and FCOS targets for points in multiple images.
- Parameters
cls_scores (list[Tensor]) – Box iou-aware scores for each scale level with shape (N, num_points * num_classes, H, W).
mlvl_points (list[Tensor]) – Points of each fpn level, each has shape (num_points, 2).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
labels_list (list[Tensor]): Labels of each level.
label_weights (Tensor/None): Label weights of all levels.
bbox_targets_list (list[Tensor]): Regression targets of each level, (l, t, r, b).
bbox_weights (Tensor/None): Bbox weights of all levels.
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], bbox_preds_refine: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Compute loss of the head.
- Parameters
cls_scores (list[Tensor]) – Box iou-aware scores for each scale level, each is a 4D-tensor, the channel number is num_points * num_classes.
bbox_preds (list[Tensor]) – Box offsets for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
bbox_preds_refine (list[Tensor]) – Refined Box offsets for each scale level, each is a 4D-tensor, the channel number is num_points * 4.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], Optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- star_dcn_offset(bbox_pred: Tensor, gradient_mul: float, stride: int) Tensor [source]¶
Compute the star deformable conv offsets.
- Parameters
bbox_pred (Tensor) – Predicted bbox distance offsets (l, r, t, b).
gradient_mul (float) – Gradient multiplier.
stride (int) – The corresponding stride for feature maps, used to project the bbox onto the feature map.
- Returns
The offsets for deformable convolution.
- Return type
Tensor
- transform_bbox_targets(decoded_bboxes: List[Tensor], mlvl_points: List[Tensor], num_imgs: int) List[Tensor] [source]¶
Transform bbox_targets (x1, y1, x2, y2) into (l, t, r, b) format.
- Parameters
decoded_bboxes (list[Tensor]) – Regression targets of each level, in the form of (x1, y1, x2, y2).
mlvl_points (list[Tensor]) – Points of each fpn level, each has shape (num_points, 2).
num_imgs (int) – the number of images in a batch.
- Returns
- Regression targets of each level in
the form of (l, t, r, b).
- Return type
bbox_targets (list[Tensor])
- class mmdet.models.dense_heads.YOLACTHead(num_classes: int, in_channels: int, anchor_generator: Union[ConfigDict, dict] = {'octave_base_scale': 3, 'ratios': [0.5, 1.0, 2.0], 'scales_per_octave': 1, 'strides': [8, 16, 32, 64, 128], 'type': 'AnchorGenerator'}, loss_cls: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'reduction': 'none', 'type': 'CrossEntropyLoss', 'use_sigmoid': False}, loss_bbox: Union[ConfigDict, dict] = {'beta': 1.0, 'loss_weight': 1.5, 'type': 'SmoothL1Loss'}, num_head_convs: int = 1, num_protos: int = 32, use_ohem: bool = True, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = {'bias': 0, 'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'}, **kwargs)[source]¶
YOLACT box head used in https://arxiv.org/abs/1904.02689.
Note that YOLACT head is a light version of RetinaNet head. Four differences are described as follows:
YOLACT box head has three-times fewer anchors.
YOLACT box head shares the convs for box and cls branches.
YOLACT box head uses OHEM instead of Focal loss.
YOLACT box head predicts a set of mask coefficients for each box.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
anchor_generator (
ConfigDict
or dict) – Config dict for anchor generatorloss_cls (
ConfigDict
or dict) – Config of classification loss.loss_bbox (
ConfigDict
or dict) – Config of localization loss.num_head_convs (int) – Number of the conv layers shared by box and cls branches.
num_protos (int) – Number of the mask coefficients.
use_ohem (bool) – If true,
loss_single_OHEM
will be used for cls loss calculation. If false,loss_single
will be used.conv_cfg (
ConfigDict
or dict, optional) – Dictionary to construct and config conv layer.norm_cfg (
ConfigDict
or dict, optional) – Dictionary to construct and config norm layer.
:param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict.- OHEMloss_by_feat_single(cls_score: Tensor, bbox_pred: Tensor, anchors: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, bbox_weights: Tensor, avg_factor: int) tuple [source]¶
Compute loss of a single image. Similar to func:
SSDHead.loss_by_feat_single
- Parameters
cls_score (Tensor) – Box scores for eachimage Has shape (num_total_anchors, num_classes).
bbox_pred (Tensor) – Box energies / deltas for each image level with shape (num_total_anchors, 4).
anchors (Tensor) – Box reference for each scale level with shape (num_total_anchors, 4).
labels (Tensor) – Labels of each anchors with shape (num_total_anchors,).
label_weights (Tensor) – Label weights of each anchor with shape (num_total_anchors,)
bbox_targets (Tensor) – BBox regression targets of each anchor with shape (num_total_anchors, 4).
bbox_weights (Tensor) – BBox regression loss weights of each anchor with shape (num_total_anchors, 4).
avg_factor (int) – Average factor that is used to average the loss. When using sampling method, avg_factor is usually the sum of positive and negative priors. When using PseudoSampler, avg_factor is usually equal to the number of positive priors.
- Returns
A tuple of cls loss and bbox loss of one feature map.
- Return type
Tuple[Tensor, Tensor]
- forward_single(x: Tensor) tuple [source]¶
Forward feature of a single scale level.
- Parameters
x (Tensor) – Features of a single scale level.
- Returns
cls_score (Tensor): Cls scores for a single scale level the channels number is num_anchors * num_classes.
bbox_pred (Tensor): Box energies / deltas for a single scale level, the channels number is num_anchors * 4.
coeff_pred (Tensor): Mask coefficients for a single scale level, the channels number is num_anchors * num_protos.
- Return type
tuple
- get_positive_infos() List[InstanceData] [source]¶
Get positive information from sampling results.
- Returns
Positive Information of each image, usually including positive bboxes, positive labels, positive priors, positive coeffs, etc.
- Return type
list[
InstanceData
]
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], coeff_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the bbox head.
When
self.use_ohem == True
, it functions likeSSDHead.loss
, otherwise, it followsAnchorHead.loss
.- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
coeff_preds (list[Tensor]) – Mask coefficients for each scale level with shape (N, num_anchors * num_protos, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict
- predict_by_feat(cls_scores, bbox_preds, coeff_preds, batch_img_metas, cfg=None, rescale=True, **kwargs)[source]¶
Similar to func:
AnchorHead.get_bboxes
, but additionally processes coeff_preds.- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level with shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W)
coeff_preds (list[Tensor]) – Mask coefficients for each scale level with shape (N, num_anchors * num_protos, H, W)
batch_img_metas (list[dict]) – Batch image meta info.
cfg (
Config
| None) – Test / postprocessing configuration, if None, test_cfg would be usedrescale (bool) – If True, return boxes in original image space. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
coeffs (Tensor): the predicted mask coefficients of instance inside the corresponding box has a shape (n, num_protos).
- Return type
list[
InstanceData
]
- class mmdet.models.dense_heads.YOLACTProtonet(num_classes: int, in_channels: int = 256, proto_channels: tuple = (256, 256, 256, None, 256, 32), proto_kernel_sizes: tuple = (3, 3, 3, -2, 3, 1), include_last_relu: bool = True, num_protos: int = 32, loss_mask_weight: float = 1.0, max_masks_to_train: int = 100, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, with_seg_branch: bool = True, loss_segm: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, init_cfg={'distribution': 'uniform', 'override': {'name': 'protonet'}, 'type': 'Xavier'})[source]¶
YOLACT mask head used in https://arxiv.org/abs/1904.02689.
This head outputs the mask prototypes for YOLACT.
- Parameters
in_channels (int) – Number of channels in the input feature map.
proto_channels (tuple[int]) – Output channels of protonet convs.
proto_kernel_sizes (tuple[int]) – Kernel sizes of protonet convs.
include_last_relu (bool) – If keep the last relu of protonet.
num_protos (int) – Number of prototypes.
num_classes (int) – Number of categories excluding the background category.
loss_mask_weight (float) – Reweight the mask loss by this factor.
max_masks_to_train (int) – Maximum number of masks to train for each image.
with_seg_branch (bool) – Whether to apply a semantic segmentation branch and calculate loss during training to increase performance with no speed penalty. Defaults to True.
loss_segm (
ConfigDict
or dict, optional) – Config of semantic segmentation loss.train_cfg (
ConfigDict
or dict, optional) – Training config of head.test_cfg (
ConfigDict
or dict, optional) – Testing config of head.
:param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict.- crop_mask_preds(mask_preds: List[Tensor], batch_img_metas: List[dict], positive_infos: List[InstanceData]) list [source]¶
Crop predicted masks by zeroing out everything not in the predicted bbox.
- Parameters
mask_preds (list[Tensor]) – Predicted prototypes with shape (num_classes, H, W).
batch_img_metas (list[dict]) – Meta information of multiple images.
positive_infos (List[:obj:
InstanceData
]) – Positive information that calculate from detect head.
- Returns
The cropped masks.
- Return type
list
- crop_single(masks: Tensor, boxes: Tensor, padding: int = 1) Tensor [source]¶
Crop single predicted masks by zeroing out everything not in the predicted bbox.
- Parameters
masks (Tensor) – Predicted prototypes, has shape [H, W, N].
boxes (Tensor) – Bbox coords in relative point form with shape [N, 4].
padding (int) – Image padding size.
- Returns
The cropped masks.
- Return type
Tensor
- forward(x: tuple, positive_infos: List[InstanceData]) tuple [source]¶
Forward feature from the upstream network to get prototypes and linearly combine the prototypes, using masks coefficients, into instance masks. Finally, crop the instance masks with given bboxes.
- Parameters
x (Tuple[Tensor]) – Feature from the upstream network, which is a 4D-tensor.
positive_infos (List[:obj:
InstanceData
]) – Positive information that calculate from detect head.
- Returns
Predicted instance segmentation masks and semantic segmentation map.
- Return type
tuple
- loss_by_feat(mask_preds: List[Tensor], segm_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], positive_infos: List[InstanceData], **kwargs) dict [source]¶
Calculate the loss based on the features extracted by the mask head.
- Parameters
mask_preds (list[Tensor]) – List of predicted prototypes, each has shape (num_classes, H, W).
segm_preds (Tensor) – Predicted semantic segmentation map with shape (N, num_classes, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,masks
, andlabels
attributes.batch_img_metas (list[dict]) – Meta information of multiple images.
positive_infos (List[:obj:
InstanceData
]) – Information of positive samples of each image that are assigned in detection head.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- predict_by_feat(mask_preds: List[Tensor], segm_preds: Tensor, results_list: List[InstanceData], batch_img_metas: List[dict], rescale: bool = True, **kwargs) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into mask results.
- Parameters
mask_preds (list[Tensor]) – Predicted prototypes with shape (num_classes, H, W).
results_list (List[:obj:
InstanceData
]) – BBoxHead results.batch_img_metas (list[dict]) – Meta information of all images.
rescale (bool, optional) – Whether to rescale the results. Defaults to False.
- Returns
Processed results of multiple images.Each
InstanceData
usually contains following keys.scores (Tensor): Classification scores, has shape (num_instance,).
labels (Tensor): Has shape (num_instances,).
masks (Tensor): Processed mask results, has shape (num_instances, h, w).
- Return type
list[
InstanceData
]
- sanitize_coordinates(x1: Tensor, x2: Tensor, img_size: int, padding: int = 0, cast: bool = True) tuple [source]¶
Sanitizes the input coordinates so that x1 < x2, x1 != x2, x1 >= 0, and x2 <= image_size. Also converts from relative to absolute coordinates and casts the results to long tensors.
Warning: this does things in-place behind the scenes so copy if necessary.
- Parameters
x1 (Tensor) – shape (N, ).
x2 (Tensor) – shape (N, ).
img_size (int) – Size of the input image.
padding (int) – x1 >= padding, x2 <= image_size-padding.
cast (bool) – If cast is false, the result won’t be cast to longs.
- Returns
x1 (Tensor): Sanitized _x1.
x2 (Tensor): Sanitized _x2.
- Return type
tuple
- class mmdet.models.dense_heads.YOLOFHead(num_classes: int, in_channels: List[int], num_cls_convs: int = 2, num_reg_convs: int = 4, norm_cfg: Union[ConfigDict, dict] = {'requires_grad': True, 'type': 'BN'}, **kwargs)[source]¶
Detection Head of YOLOF
- Parameters
num_classes (int) – The number of object classes (w/o background)
in_channels (list[int]) – The number of input channels per scale.
cls_num_convs (int) – The number of convolutions of cls branch. Defaults to 2.
reg_num_convs (int) – The number of convolutions of reg branch. Defaults to 4.
norm_cfg (
ConfigDict
or dict) – Config dict for normalization layer. Defaults todict(type='BN', requires_grad=True)
.
- forward_single(x: Tensor) Tuple[Tensor, Tensor] [source]¶
Forward feature of a single scale level.
- Parameters
x (Tensor) – Features of a single scale level.
- Returns
normalized_cls_score (Tensor): Normalized Cls scores for a single scale level, the channels number is num_base_priors * num_classes. bbox_reg (Tensor): Box energies / deltas for a single scale level, the channels number is num_base_priors * 4.
- Return type
tuple
- get_targets(cls_scores_list: List[Tensor], bbox_preds_list: List[Tensor], anchor_list: List[Tensor], valid_flag_list: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None, unmap_outputs: bool = True)[source]¶
Compute regression and classification targets for anchors in multiple images.
- Parameters
cls_scores_list (list[Tensor]) – Classification scores of each image. each is a 4D-tensor, the shape is (h * w, num_anchors * num_classes).
bbox_preds_list (list[Tensor]) – Bbox preds of each image. each is a 4D-tensor, the shape is (h * w, num_anchors * 4).
anchor_list (list[Tensor]) – Anchors of each image. Each element of is a tensor of shape (h * w * num_anchors, 4).
valid_flag_list (list[Tensor]) – Valid flags of each image. Each element of is a tensor of shape (h * w * num_anchors, )
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.unmap_outputs (bool) – Whether to map outputs back to the original set of anchors.
- Returns
Usually returns a tuple containing learning targets.
batch_labels (Tensor): Label of all images. Each element of is a tensor of shape (batch, h * w * num_anchors)
batch_label_weights (Tensor): Label weights of all images of is a tensor of shape (batch, h * w * num_anchors)
num_total_pos (int): Number of positive samples in all images.
num_total_neg (int): Number of negative samples in all images.
- additional_returns: This function enables user-defined returns from
self._get_targets_single. These returns are currently refined to properties at each feature map (i.e. having HxW dimension). The results will be concatenated after the end
- Return type
tuple
- loss_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (list[Tensor]) – Box scores for each scale level has shape (N, num_anchors * num_classes, H, W).
bbox_preds (list[Tensor]) – Box energies / deltas for each scale level with shape (N, num_anchors * 4, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict
- class mmdet.models.dense_heads.YOLOV3Head(num_classes: int, in_channels: Sequence[int], out_channels: Sequence[int] = (1024, 512, 256), anchor_generator: Union[ConfigDict, dict] = {'base_sizes': [[(116, 90), (156, 198), (373, 326)], [(30, 61), (62, 45), (59, 119)], [(10, 13), (16, 30), (33, 23)]], 'strides': [32, 16, 8], 'type': 'YOLOAnchorGenerator'}, bbox_coder: Union[ConfigDict, dict] = {'type': 'YOLOBBoxCoder'}, featmap_strides: Sequence[int] = (32, 16, 8), one_hot_smoother: float = 0.0, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'requires_grad': True, 'type': 'BN'}, act_cfg: Union[ConfigDict, dict] = {'negative_slope': 0.1, 'type': 'LeakyReLU'}, loss_cls: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_conf: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_xy: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_wh: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'MSELoss'}, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
YOLOV3Head Paper link: https://arxiv.org/abs/1804.02767.
- Parameters
num_classes (int) – The number of object classes (w/o background)
in_channels (Sequence[int]) – Number of input channels per scale.
out_channels (Sequence[int]) – The number of output channels per scale before the final 1x1 layer. Default: (1024, 512, 256).
anchor_generator (
ConfigDict
or dict) – Config dict for anchor generator.bbox_coder (
ConfigDict
or dict) – Config of bounding box coder.featmap_strides (Sequence[int]) – The stride of each scale. Should be in descending order. Defaults to (32, 16, 8).
one_hot_smoother (float) – Set a non-zero value to enable label-smooth Defaults to 0.
conv_cfg (
ConfigDict
or dict, optional) – Config dict for convolution layer. Defaults to None.norm_cfg (
ConfigDict
or dict) – Dictionary to construct and config norm layer. Defaults to dict(type=’BN’, requires_grad=True).act_cfg (
ConfigDict
or dict) – Config dict for activation layer. Defaults to dict(type=’LeakyReLU’, negative_slope=0.1).loss_cls (
ConfigDict
or dict) – Config of classification loss.loss_conf (
ConfigDict
or dict) – Config of confidence loss.loss_xy (
ConfigDict
or dict) – Config of xy coordinate loss.loss_wh (
ConfigDict
or dict) – Config of wh coordinate loss.train_cfg (
ConfigDict
or dict, optional) – Training config of YOLOV3 head. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – Testing config of YOLOV3 head. Defaults to None.
- forward(x: Tuple[Tensor, ...]) tuple [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
- A tuple of multi-level predication map, each is a
4D-tensor of shape (batch_size, 5+num_classes, height, width).
- Return type
tuple[Tensor]
- get_targets(anchor_list: List[List[Tensor]], responsible_flag_list: List[List[Tensor]], batch_gt_instances: List[InstanceData]) tuple [source]¶
Compute target maps for anchors in multiple images.
- Parameters
anchor_list (list[list[Tensor]]) – Multi level anchors of each image. The outer list indicates images, and the inner list corresponds to feature levels of the image. Each element of the inner list is a tensor of shape (num_total_anchors, 4).
responsible_flag_list (list[list[Tensor]]) – Multi level responsible flags of each image. Each element is a tensor of shape (num_total_anchors, )
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.
- Returns
- Usually returns a tuple containing learning targets.
target_map_list (list[Tensor]): Target map of each level.
neg_map_list (list[Tensor]): Negative map of each level.
- Return type
tuple
- loss_by_feat(pred_maps: Sequence[Tensor], batch_gt_instances: List[InstanceData], batch_img_metas: List[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
pred_maps (list[Tensor]) – Prediction map for each scale level, shape (N, num_anchors * num_attrib, H, W)
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_by_feat_single(pred_map: Tensor, target_map: Tensor, neg_map: Tensor) tuple [source]¶
Calculate the loss of a single scale level based on the features extracted by the detection head.
- Parameters
pred_map (Tensor) – Raw predictions for a single level.
target_map (Tensor) – The Ground-Truth target for a single level.
neg_map (Tensor) – The negative masks for a single level.
- Returns
loss_cls (Tensor): Classification loss. loss_conf (Tensor): Confidence loss. loss_xy (Tensor): Regression loss of x, y coordinate. loss_wh (Tensor): Regression loss of w, h coordinate.
- Return type
tuple
- property num_attrib: int¶
number of attributes in pred_map, bboxes (4) + objectness (1) + num_classes
- Type
int
- property num_levels: int¶
number of feature map levels
- Type
int
- predict_by_feat(pred_maps: Sequence[Tensor], batch_img_metas: Optional[List[dict]], cfg: Optional[Union[ConfigDict, dict]] = None, rescale: bool = False, with_nms: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results. It has been accelerated since PR #5991.
- Parameters
pred_maps (Sequence[Tensor]) – Raw predictions for a batch of images.
batch_img_metas (list[dict], Optional) – Batch image meta info. Defaults to None.
cfg (
ConfigDict
or dict, optional) – Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None.rescale (bool) – If True, return boxes in original image space. Defaults to False.
with_nms (bool) – If True, do nms before return boxes. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- responsible_flags(featmap_sizes: List[tuple], gt_bboxes: Tensor, device: str) List[Tensor] [source]¶
Generate responsible anchor flags of grid cells in multiple scales.
- Parameters
featmap_sizes (List[tuple]) – List of feature map sizes in multiple feature levels.
gt_bboxes (Tensor) – Ground truth boxes, shape (n, 4).
device (str) – Device where the anchors will be put on.
- Returns
responsible flags of anchors in multiple level
- Return type
List[Tensor]
- class mmdet.models.dense_heads.YOLOXHead(num_classes: int, in_channels: int, feat_channels: int = 256, stacked_convs: int = 2, strides: Sequence[int] = (8, 16, 32), use_depthwise: bool = False, dcn_on_last_conv: bool = False, conv_bias: Union[bool, str] = 'auto', conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg: Union[ConfigDict, dict] = {'type': 'Swish'}, loss_cls: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'reduction': 'sum', 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_bbox: Union[ConfigDict, dict] = {'eps': 1e-16, 'loss_weight': 5.0, 'mode': 'square', 'reduction': 'sum', 'type': 'IoULoss'}, loss_obj: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'reduction': 'sum', 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_l1: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'reduction': 'sum', 'type': 'L1Loss'}, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = {'a': 2.23606797749979, 'distribution': 'uniform', 'layer': 'Conv2d', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu', 'type': 'Kaiming'})[source]¶
YOLOXHead head used in YOLOX.
- Parameters
num_classes (int) – Number of categories excluding the background category.
in_channels (int) – Number of channels in the input feature map.
feat_channels (int) – Number of hidden channels in stacking convs. Defaults to 256
stacked_convs (int) – Number of stacking convs of the head. Defaults to (8, 16, 32).
strides (Sequence[int]) – Downsample factor of each feature map. Defaults to None.
use_depthwise (bool) – Whether to depthwise separable convolution in blocks. Defaults to False.
dcn_on_last_conv (bool) – If true, use dcn in the last layer of towers. Defaults to False.
conv_bias (bool or str) – If specified as auto, it will be decided by the norm_cfg. Bias of conv will be set as True if norm_cfg is None, otherwise False. Defaults to “auto”.
conv_cfg (
ConfigDict
or dict, optional) – Config dict for convolution layer. Defaults to None.norm_cfg (
ConfigDict
or dict) – Config dict for normalization layer. Defaults to dict(type=’BN’, momentum=0.03, eps=0.001).act_cfg (
ConfigDict
or dict) – Config dict for activation layer. Defaults to None.loss_cls (
ConfigDict
or dict) – Config of classification loss.loss_bbox (
ConfigDict
or dict) – Config of localization loss.loss_obj (
ConfigDict
or dict) – Config of objectness loss.loss_l1 (
ConfigDict
or dict) – Config of L1 loss.train_cfg (
ConfigDict
or dict, optional) – Training config of anchor head. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – Testing config of anchor head. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- forward(x: Tuple[Tensor]) Tuple[List] [source]¶
Forward features from the upstream network.
- Parameters
x (Tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of multi-level classification scores, bbox predictions, and objectnesses.
- Return type
Tuple[List]
- forward_single(x: Tensor, cls_convs: Module, reg_convs: Module, conv_cls: Module, conv_reg: Module, conv_obj: Module) Tuple[Tensor, Tensor, Tensor] [source]¶
Forward feature of a single scale level.
- loss_by_feat(cls_scores: Sequence[Tensor], bbox_preds: Sequence[Tensor], objectnesses: Sequence[Tensor], batch_gt_instances: Sequence[InstanceData], batch_img_metas: Sequence[dict], batch_gt_instances_ignore: Optional[List[InstanceData]] = None) dict [source]¶
Calculate the loss based on the features extracted by the detection head.
- Parameters
cls_scores (Sequence[Tensor]) – Box scores for each scale level, each is a 4D-tensor, the channel number is num_priors * num_classes.
bbox_preds (Sequence[Tensor]) – Box energies / deltas for each scale level, each is a 4D-tensor, the channel number is num_priors * 4.
objectnesses (Sequence[Tensor]) – Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W).
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
andlabels
attributes.batch_img_metas (list[dict]) – Meta information of each image, e.g., image size, scaling factor, etc.
batch_gt_instances_ignore (list[
InstanceData
], optional) – Batch of gt_instances_ignore. It includesbboxes
attribute data that is ignored during training and testing. Defaults to None.
- Returns
A dictionary of losses.
- Return type
dict[str, Tensor]
- predict_by_feat(cls_scores: List[Tensor], bbox_preds: List[Tensor], objectnesses: Optional[List[Tensor]], batch_img_metas: Optional[List[dict]] = None, cfg: Optional[ConfigDict] = None, rescale: bool = False, with_nms: bool = True) List[InstanceData] [source]¶
Transform a batch of output features extracted by the head into bbox results. :param cls_scores: Classification scores for all
scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * num_classes, H, W).
- Parameters
bbox_preds (list[Tensor]) – Box energies / deltas for all scale levels, each is a 4D-tensor, has shape (batch_size, num_priors * 4, H, W).
objectnesses (list[Tensor], Optional) – Score factor for all scale level, each is a 4D-tensor, has shape (batch_size, 1, H, W).
batch_img_metas (list[dict], Optional) – Batch image meta info. Defaults to None.
cfg (ConfigDict, optional) – Test / postprocessing configuration, if None, test_cfg would be used. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
with_nms (bool) – If True, do nms before return boxes. Defaults to True.
- Returns
Object detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
detectors¶
- class mmdet.models.detectors.ATSS(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of ATSS
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.train_cfg (
ConfigDict
or dict, optional) – The training config of ATSS. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of ATSS. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- class mmdet.models.detectors.AutoAssign(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of AutoAssign: Differentiable Label Assignment for Dense Object Detection
- Parameters
backbone (
ConfigDict
or dict) – The backbone config.neck (
ConfigDict
or dict) – The neck config.bbox_head (
ConfigDict
or dict) – The bbox head config.train_cfg (
ConfigDict
or dict, optional) – The training config of AutoAssign. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of AutoAssign. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- class mmdet.models.detectors.BaseDetector(data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Base class for detectors.
- Parameters
data_preprocessor (dict or ConfigDict, optional) –
The pre-process config of
BaseDataPreprocessor
. it usually includes,pad_size_divisor
,pad_value
,mean
andstd
.init_cfg (dict or ConfigDict, optional) – the config to control the initialization. Defaults to None.
- add_pred_to_datasample(data_samples: List[DetDataSample], results_list: List[InstanceData]) List[DetDataSample] [source]¶
Add predictions to DetDataSample.
- Parameters
data_samples (list[
DetDataSample
], optional) – A batch of data samples that contain annotations and predictions.results_list (list[
InstanceData
]) – Detection results of each image.
- Returns
Detection results of the input images. Each DetDataSample usually contain ‘pred_instances’. And the
pred_instances
usually contains following keys.- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
DetDataSample
]
- forward(inputs: Tensor, data_samples: Optional[List[DetDataSample]] = None, mode: str = 'tensor') Union[Dict[str, Tensor], List[DetDataSample], Tuple[Tensor], Tensor] [source]¶
The unified entry for a forward process in both training and test.
The method should accept three modes: “tensor”, “predict” and “loss”:
“tensor”: Forward the whole network and return tensor or tuple of
tensor without any post-processing, same as a common nn.Module. - “predict”: Forward and return the predictions, which are fully processed to a list of
DetDataSample
. - “loss”: Forward and return a dict of losses according to the given inputs and data samples.Note that this method doesn’t handle either back propagation or parameter update, which are supposed to be done in
train_step()
.- Parameters
inputs (torch.Tensor) – The input tensor with shape (N, C, …) in general.
data_samples (list[
DetDataSample
], optional) – A batch of data samples that contain annotations and predictions. Defaults to None.mode (str) – Return what kind of value. Defaults to ‘tensor’.
- Returns
The return type depends on
mode
.If
mode="tensor"
, return a tensor or a tuple of tensor.If
mode="predict"
, return a list ofDetDataSample
.If
mode="loss"
, return a dict of tensor.
- abstract loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) Union[dict, tuple] [source]¶
Calculate losses from a batch of inputs and data samples.
- abstract predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) List[DetDataSample] [source]¶
Predict results from a batch of inputs and data samples with post- processing.
- property with_bbox: bool¶
whether the detector has a bbox head
- Type
bool
- property with_mask: bool¶
whether the detector has a mask head
- Type
bool
- property with_neck: bool¶
whether the detector has a neck
- Type
bool
whether the detector has a shared head in the RoI Head
- Type
bool
- class mmdet.models.detectors.BoxInst(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], mask_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of BoxInst
- class mmdet.models.detectors.CLRNet(backbone, neck=None, head=None, data_preprocessor=None)[source]¶
- class mmdet.models.detectors.CascadeRCNN(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, rpn_head: Optional[Union[ConfigDict, dict]] = None, roi_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Cascade R-CNN: Delving into High Quality Object Detection
- class mmdet.models.detectors.CenterNet(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of CenterNet(Objects as Points)
- class mmdet.models.detectors.CondInst(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], mask_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of CondInst
- class mmdet.models.detectors.ConditionalDETR(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, encoder: Optional[Union[ConfigDict, dict]] = None, decoder: Optional[Union[ConfigDict, dict]] = None, bbox_head: Optional[Union[ConfigDict, dict]] = None, positional_encoding: Optional[Union[ConfigDict, dict]] = None, num_queries: int = 100, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of `Conditional DETR for Fast Training Convergence.
<https://arxiv.org/abs/2108.06152>`_.
Code is modified from the official github repo.
- forward_decoder(query: Tensor, query_pos: Tensor, memory: Tensor, memory_mask: Tensor, memory_pos: Tensor) Dict [source]¶
Forward with Transformer decoder.
- Parameters
query (Tensor) – The queries of decoder inputs, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional queries of decoder inputs, has shape (bs, num_queries, dim).
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points).
memory_pos (Tensor) – The positional embeddings of memory, has shape (bs, num_feat_points, dim).
- Returns
The dictionary of decoder outputs, which includes the hidden_states and references of the decoder output.
- hidden_states (Tensor): Has shape
(num_decoder_layers, bs, num_queries, dim)
- references (Tensor): Has shape
(bs, num_queries, 2)
- Return type
dict
- class mmdet.models.detectors.CornerNet(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
CornerNet.
This detector is the implementation of the paper CornerNet: Detecting Objects as Paired Keypoints .
- class mmdet.models.detectors.CrowdDet(backbone: Union[ConfigDict, dict], rpn_head: Union[ConfigDict, dict], roi_head: Union[ConfigDict, dict], train_cfg: Union[ConfigDict, dict], test_cfg: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of CrowdDet
- Parameters
backbone (
ConfigDict
or dict) – The backbone config.rpn_head (
ConfigDict
or dict) – The rpn config.roi_head (
ConfigDict
or dict) – The roi config.train_cfg (
ConfigDict
or dict, optional) – The training config of FCOS. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of FCOS. Defaults to None.neck (
ConfigDict
or dict) – The neck config.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- class mmdet.models.detectors.DABDETR(*args, with_random_refpoints: bool = False, num_patterns: int = 0, **kwargs)[source]¶
Implementation of `DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR.
<https://arxiv.org/abs/2201.12329>`_.
Code is modified from the official github repo.
- Parameters
with_random_refpoints (bool) – Whether to randomly initialize query embeddings and not update them during training. Defaults to False.
num_patterns (int) – Inspired by Anchor-DETR. Defaults to 0.
- forward_decoder(query: Tensor, query_pos: Tensor, memory: Tensor, memory_mask: Tensor, memory_pos: Tensor) Dict [source]¶
Forward with Transformer decoder.
- Parameters
query (Tensor) – The queries of decoder inputs, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional queries of decoder inputs, has shape (bs, num_queries, dim).
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points).
memory_pos (Tensor) – The positional embeddings of memory, has shape (bs, num_feat_points, dim).
- Returns
The dictionary of decoder outputs, which includes the hidden_states and references of the decoder output.
- Return type
dict
- pre_decoder(memory: Tensor) Tuple[Dict, Dict] [source]¶
Prepare intermediate variables before entering Transformer decoder, such as query, query_pos.
- Parameters
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
- Returns
The first dict contains the inputs of decoder and the second dict contains the inputs of the bbox_head function.
- decoder_inputs_dict (dict): The keyword args dictionary of
self.forward_decoder(), which includes ‘query’, ‘query_pos’, ‘memory’ and ‘reg_branches’.
- head_inputs_dict (dict): The keyword args dictionary of the
bbox_head functions, which is usually empty, or includes enc_outputs_class and enc_outputs_class when the detector support ‘two stage’ or ‘query selection’ strategies.
- Return type
tuple[dict, dict]
- class mmdet.models.detectors.DDOD(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of DDOD.
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.train_cfg (
ConfigDict
or dict, optional) – The training config of ATSS. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of ATSS. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- class mmdet.models.detectors.DDQDETR(*args, dense_topk_ratio: float = 1.5, dqs_cfg: Optional[Union[ConfigDict, dict]] = {'iou_threshold': 0.8, 'type': 'nms'}, **kwargs)[source]¶
Implementation of Dense Distinct Query for End-to-End Object Detection
Code is modified from the official github repo.
- Parameters
dense_topk_ratio (float) – Ratio of num_dense queries to num_queries. Defaults to 1.5.
dqs_cfg (
ConfigDict
or dict, optional) – Config of Distinct Queries Selection. Defaults to nms with iou_threshold = 0.8.
- pre_decoder(memory: Tensor, memory_mask: Tensor, spatial_shapes: Tensor, batch_data_samples: Optional[List[DetDataSample]] = None) Tuple[Dict] [source]¶
Prepare intermediate variables before entering Transformer decoder, such as query, memory, and reference_points.
- Parameters
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points). Will only be used when as_two_stage is True.
spatial_shapes (Tensor) – Spatial shapes of features in all levels. With shape (num_levels, 2), last dimension represents (h, w). Will only be used when as_two_stage is True.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg. Defaults to None.
- Returns
The decoder_inputs_dict and head_inputs_dict.
decoder_inputs_dict (dict): The keyword dictionary args of self.forward_decoder(), which includes ‘query’, ‘memory’, reference_points, and dn_mask. The reference points of decoder input here are 4D boxes, although it has points in its name.
head_inputs_dict (dict): The keyword dictionary args of the bbox_head functions, which includes topk_score, topk_coords, dense_topk_score, dense_topk_coords, and dn_meta, when self.training is True, else is empty.
- Return type
tuple[dict]
- class mmdet.models.detectors.DETR(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, encoder: Optional[Union[ConfigDict, dict]] = None, decoder: Optional[Union[ConfigDict, dict]] = None, bbox_head: Optional[Union[ConfigDict, dict]] = None, positional_encoding: Optional[Union[ConfigDict, dict]] = None, num_queries: int = 100, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of `DETR: End-to-End Object Detection with Transformers.
<https://arxiv.org/pdf/2005.12872>`_.
Code is modified from the official github repo.
- forward_decoder(query: Tensor, query_pos: Tensor, memory: Tensor, memory_mask: Tensor, memory_pos: Tensor) Dict [source]¶
Forward with Transformer decoder.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
query (Tensor) – The queries of decoder inputs, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional queries of decoder inputs, has shape (bs, num_queries, dim).
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points).
memory_pos (Tensor) – The positional embeddings of memory, has shape (bs, num_feat_points, dim).
- Returns
The dictionary of decoder outputs, which includes the hidden_states of the decoder output.
hidden_states (Tensor): Has shape (num_decoder_layers, bs, num_queries, dim)
- Return type
dict
- forward_encoder(feat: Tensor, feat_mask: Tensor, feat_pos: Tensor) Dict [source]¶
Forward with Transformer encoder.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
feat (Tensor) – Sequential features, has shape (bs, num_feat_points, dim).
feat_mask (Tensor) – ByteTensor, the padding mask of the features, has shape (bs, num_feat_points).
feat_pos (Tensor) – The positional embeddings of the features, has shape (bs, num_feat_points, dim).
- Returns
The dictionary of encoder outputs, which includes the memory of the encoder output.
- Return type
dict
- pre_decoder(memory: Tensor) Tuple[Dict, Dict] [source]¶
Prepare intermediate variables before entering Transformer decoder, such as query, query_pos.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
- Returns
The first dict contains the inputs of decoder and the second dict contains the inputs of the bbox_head function.
decoder_inputs_dict (dict): The keyword args dictionary of self.forward_decoder(), which includes ‘query’, ‘query_pos’, ‘memory’.
head_inputs_dict (dict): The keyword args dictionary of the bbox_head functions, which is usually empty, or includes enc_outputs_class and enc_outputs_class when the detector support ‘two stage’ or ‘query selection’ strategies.
- Return type
tuple[dict, dict]
- pre_transformer(img_feats: Tuple[Tensor], batch_data_samples: Optional[List[DetDataSample]] = None) Tuple[Dict, Dict] [source]¶
Prepare the inputs of the Transformer.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
img_feats (Tuple[Tensor]) – Tuple of features output from the neck, has shape (bs, c, h, w).
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg. Defaults to None.
- Returns
The first dict contains the inputs of encoder and the second dict contains the inputs of decoder.
encoder_inputs_dict (dict): The keyword args dictionary of self.forward_encoder(), which includes ‘feat’, ‘feat_mask’, and ‘feat_pos’.
decoder_inputs_dict (dict): The keyword args dictionary of self.forward_decoder(), which includes ‘memory_mask’, and ‘memory_pos’.
- Return type
tuple[dict, dict]
- class mmdet.models.detectors.DINO(*args, dn_cfg: Optional[Union[ConfigDict, dict]] = None, **kwargs)[source]¶
Implementation of DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
Code is modified from the official github repo.
- Parameters
dn_cfg (
ConfigDict
or dict, optional) – Config of denoising query generator. Defaults to None.
- forward_decoder(query: Tensor, memory: Tensor, memory_mask: Tensor, reference_points: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, dn_mask: Optional[Tensor] = None, **kwargs) Dict [source]¶
Forward with Transformer decoder.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
query (Tensor) – The queries of decoder inputs, has shape (bs, num_queries_total, dim), where num_queries_total is the sum of num_denoising_queries and num_matching_queries when self.training is True, else num_matching_queries.
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points).
reference_points (Tensor) – The initial reference, has shape (bs, num_queries_total, 4) with the last dimension arranged as (cx, cy, w, h).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor) – The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, …].
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
dn_mask (Tensor, optional) – The attention mask to prevent information leakage from different denoising groups and matching parts, will be used as self_attn_mask of the self.decoder, has shape (num_queries_total, num_queries_total). It is None when self.training is False.
- Returns
The dictionary of decoder outputs, which includes the hidden_states of the decoder output and references including the initial and intermediate reference_points.
- Return type
dict
- forward_transformer(img_feats: Tuple[Tensor], batch_data_samples: Optional[List[DetDataSample]] = None) Dict [source]¶
Forward process of Transformer.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py. The difference is that the ground truth in batch_data_samples is required for the pre_decoder to prepare the query of DINO. Additionally, DINO inherits the pre_transformer method and the forward_encoder method of DeformableDETR. More details about the two methods can be found in mmdet/detector/deformable_detr.py.
- Parameters
img_feats (tuple[Tensor]) – Tuple of feature maps from neck. Each feature map has shape (bs, dim, H, W).
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg. Defaults to None.
- Returns
The dictionary of bbox_head function inputs, which always includes the hidden_states of the decoder output and may contain references including the initial and intermediate references.
- Return type
dict
- pre_decoder(memory: Tensor, memory_mask: Tensor, spatial_shapes: Tensor, batch_data_samples: Optional[List[DetDataSample]] = None) Tuple[Dict] [source]¶
Prepare intermediate variables before entering Transformer decoder, such as query, query_pos, and reference_points.
- Parameters
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points). Will only be used when as_two_stage is True.
spatial_shapes (Tensor) – Spatial shapes of features in all levels. With shape (num_levels, 2), last dimension represents (h, w). Will only be used when as_two_stage is True.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg. Defaults to None.
- Returns
The decoder_inputs_dict and head_inputs_dict.
decoder_inputs_dict (dict): The keyword dictionary args of self.forward_decoder(), which includes ‘query’, ‘memory’, reference_points, and dn_mask. The reference points of decoder input here are 4D boxes, although it has points in its name.
head_inputs_dict (dict): The keyword dictionary args of the bbox_head functions, which includes topk_score, topk_coords, and dn_meta when self.training is True, else is empty.
- Return type
tuple[dict]
- class mmdet.models.detectors.DeformableDETR(*args, decoder: Optional[Union[ConfigDict, dict]] = None, bbox_head: Optional[Union[ConfigDict, dict]] = None, with_box_refine: bool = False, as_two_stage: bool = False, num_feature_levels: int = 4, **kwargs)[source]¶
Implementation of Deformable DETR: Deformable Transformers for End-to-End Object Detection
Code is modified from the official github repo.
- Parameters
decoder (
ConfigDict
or dict, optional) – Config of the Transformer decoder. Defaults to None.bbox_head (
ConfigDict
or dict, optional) – Config for the bounding box head module. Defaults to None.with_box_refine (bool, optional) – Whether to refine the references in the decoder. Defaults to False.
as_two_stage (bool, optional) – Whether to generate the proposal from the outputs of encoder. Defaults to False.
num_feature_levels (int, optional) – Number of feature levels. Defaults to 4.
- forward_decoder(query: Tensor, query_pos: Tensor, memory: Tensor, memory_mask: Tensor, reference_points: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor) Dict [source]¶
Forward with Transformer decoder.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
query (Tensor) – The queries of decoder inputs, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional queries of decoder inputs, has shape (bs, num_queries, dim).
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points).
reference_points (Tensor) – The initial reference, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h) when as_two_stage is True, otherwise has shape (bs, num_queries, 2) with the last dimension arranged as (cx, cy).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor) – The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, …].
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
- Returns
The dictionary of decoder outputs, which includes the hidden_states of the decoder output and references including the initial and intermediate reference_points.
- Return type
dict
- forward_encoder(feat: Tensor, feat_mask: Tensor, feat_pos: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor) Dict [source]¶
Forward with Transformer encoder.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
feat (Tensor) – Sequential features, has shape (bs, num_feat_points, dim).
feat_mask (Tensor) – ByteTensor, the padding mask of the features, has shape (bs, num_feat_points).
feat_pos (Tensor) – The positional embeddings of the features, has shape (bs, num_feat_points, dim).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor) – The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, …].
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
- Returns
The dictionary of encoder outputs, which includes the memory of the encoder output.
- Return type
dict
- gen_encoder_output_proposals(memory: Tensor, memory_mask: Tensor, spatial_shapes: Tensor) Tuple[Tensor, Tensor] [source]¶
Generate proposals from encoded memory. The function will only be used when as_two_stage is True.
- Parameters
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
- Returns
A tuple of transformed memory and proposals.
output_memory (Tensor): The transformed memory for obtaining top-k proposals, has shape (bs, num_feat_points, dim).
output_proposals (Tensor): The inverse-normalized proposal, has shape (batch_size, num_keys, 4) with the last dimension arranged as (cx, cy, w, h).
- Return type
tuple
- static get_proposal_pos_embed(proposals: Tensor, num_pos_feats: int = 128, temperature: int = 10000) Tensor [source]¶
Get the position embedding of the proposal.
- Parameters
proposals (Tensor) – Not normalized proposals, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
num_pos_feats (int, optional) – The feature dimension for each position along x, y, w, and h-axis. Note the final returned dimension for each position is 4 times of num_pos_feats. Default to 128.
temperature (int, optional) – The temperature used for scaling the position embedding. Defaults to 10000.
- Returns
The position embedding of proposal, has shape (bs, num_queries, num_pos_feats * 4), with the last dimension arranged as (cx, cy, w, h)
- Return type
Tensor
- static get_valid_ratio(mask: Tensor) Tensor [source]¶
Get the valid radios of feature map in a level.
|---> valid_W <---| ---+-----------------+-----+--- A | | | A | | | | | | | | | | valid_H | | | | | | | | H | | | | | V | | | | ---+-----------------+ | | | | V +-----------------------+--- |---------> W <---------| The valid_ratios are defined as: r_h = valid_H / H, r_w = valid_W / W They are the factors to re-normalize the relative coordinates of the image to the relative coordinates of the current level feature map.
- Parameters
mask (Tensor) – Binary mask of a feature map, has shape (bs, H, W).
- Returns
valid ratios [r_w, r_h] of a feature map, has shape (1, 2).
- Return type
Tensor
- pre_decoder(memory: Tensor, memory_mask: Tensor, spatial_shapes: Tensor) Tuple[Dict, Dict] [source]¶
Prepare intermediate variables before entering Transformer decoder, such as query, query_pos, and reference_points.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points). It will only be used when as_two_stage is True.
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w). It will only be used when as_two_stage is True.
- Returns
The decoder_inputs_dict and head_inputs_dict.
decoder_inputs_dict (dict): The keyword dictionary args of self.forward_decoder(), which includes ‘query’, ‘query_pos’, ‘memory’, and reference_points. The reference_points of decoder input here are 4D boxes when as_two_stage is True, otherwise 2D points, although it has points in its name. The reference_points in encoder is always 2D points.
head_inputs_dict (dict): The keyword dictionary args of the bbox_head functions, which includes enc_outputs_class and enc_outputs_coord. They are both None when ‘as_two_stage’ is False. The dict is empty when self.training is False.
- Return type
tuple[dict, dict]
- pre_transformer(mlvl_feats: Tuple[Tensor], batch_data_samples: Optional[List[DetDataSample]] = None) Tuple[Dict] [source]¶
Process image features before feeding them to the transformer.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
mlvl_feats (tuple[Tensor]) – Multi-level features that may have different resolutions, output from neck. Each feature has shape (bs, dim, h_lvl, w_lvl), where ‘lvl’ means ‘layer’.
batch_data_samples (list[
DetDataSample
], optional) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg. Defaults to None.
- Returns
The first dict contains the inputs of encoder and the second dict contains the inputs of decoder.
encoder_inputs_dict (dict): The keyword args dictionary of self.forward_encoder(), which includes ‘feat’, ‘feat_mask’, and ‘feat_pos’.
decoder_inputs_dict (dict): The keyword args dictionary of self.forward_decoder(), which includes ‘memory_mask’.
- Return type
tuple[dict]
- class mmdet.models.detectors.DetectionTransformer(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, encoder: Optional[Union[ConfigDict, dict]] = None, decoder: Optional[Union[ConfigDict, dict]] = None, bbox_head: Optional[Union[ConfigDict, dict]] = None, positional_encoding: Optional[Union[ConfigDict, dict]] = None, num_queries: int = 100, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Base class for Detection Transformer.
In Detection Transformer, an encoder is used to process output features of neck, then several queries interact with the encoder features using a decoder and do the regression and classification with the bounding box head.
- Parameters
backbone (
ConfigDict
or dict) – Config of the backbone.neck (
ConfigDict
or dict, optional) – Config of the neck. Defaults to None.encoder (
ConfigDict
or dict, optional) – Config of the Transformer encoder. Defaults to None.decoder (
ConfigDict
or dict, optional) – Config of the Transformer decoder. Defaults to None.bbox_head (
ConfigDict
or dict, optional) – Config for the bounding box head module. Defaults to None.positional_encoding (
ConfigDict
or dict, optional) – Config of the positional encoding module. Defaults to None.num_queries (int, optional) – Number of decoder query in Transformer. Defaults to 100.
train_cfg (
ConfigDict
or dict, optional) – Training config of the bounding box head module. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – Testing config of the bounding box head module. Defaults to None.data_preprocessor (dict or ConfigDict, optional) – The pre-process config of
BaseDataPreprocessor
. it usually includes,pad_size_divisor
,pad_value
,mean
andstd
. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- extract_feat(batch_inputs: Tensor) Tuple[Tensor] [source]¶
Extract features.
- Parameters
batch_inputs (Tensor) – Image tensor, has shape (bs, dim, H, W).
- Returns
Tuple of feature maps from neck. Each feature map has shape (bs, dim, H, W).
- Return type
tuple[Tensor]
- abstract forward_decoder(query: Tensor, query_pos: Tensor, memory: Tensor, **kwargs) Dict [source]¶
Forward with Transformer decoder.
- Parameters
query (Tensor) – The queries of decoder inputs, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional queries of decoder inputs, has shape (bs, num_queries, dim).
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
- Returns
The dictionary of decoder outputs, which includes the hidden_states of the decoder output, references including the initial and intermediate reference_points, and other algorithm-specific arguments.
- Return type
dict
- abstract forward_encoder(feat: Tensor, feat_mask: Tensor, feat_pos: Tensor, **kwargs) Dict [source]¶
Forward with Transformer encoder.
- Parameters
feat (Tensor) – Sequential features, has shape (bs, num_feat_points, dim).
feat_mask (Tensor) – ByteTensor, the padding mask of the features, has shape (bs, num_feat_points).
feat_pos (Tensor) – The positional embeddings of the features, has shape (bs, num_feat_points, dim).
- Returns
The dictionary of encoder outputs, which includes the memory of the encoder output and other algorithm-specific arguments.
- Return type
dict
- forward_transformer(img_feats: Tuple[Tensor], batch_data_samples: Optional[List[DetDataSample]] = None) Dict [source]¶
Forward process of Transformer, which includes four steps: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’. We summarized the parameters flow of the existing DETR-like detector, which can be illustrated as follow:
img_feats & batch_data_samples | V +-----------------+ | pre_transformer | +-----------------+ | | | V | +-----------------+ | | forward_encoder | | +-----------------+ | | | V | +---------------+ | | pre_decoder | | +---------------+ | | | V V | +-----------------+ | | forward_decoder | | +-----------------+ | | | V V head_inputs_dict
- Parameters
img_feats (tuple[Tensor]) – Tuple of feature maps from neck. Each feature map has shape (bs, dim, H, W).
batch_data_samples (list[
DetDataSample
], optional) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg. Defaults to None.
- Returns
The dictionary of bbox_head function inputs, which always includes the hidden_states of the decoder output and may contain references including the initial and intermediate references.
- Return type
dict
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) Union[dict, list] [source]¶
Calculate losses from a batch of inputs and data samples.
- Parameters
batch_inputs (Tensor) – Input images of shape (bs, dim, H, W). These should usually be mean centered and std scaled.
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict
- abstract pre_decoder(memory: Tensor, **kwargs) Tuple[Dict, Dict] [source]¶
Prepare intermediate variables before entering Transformer decoder, such as query, query_pos, and reference_points.
- Parameters
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
- Returns
The first dict contains the inputs of decoder and the second dict contains the inputs of the bbox_head function.
decoder_inputs_dict (dict): The keyword dictionary args of self.forward_decoder(), which includes ‘query’, ‘query_pos’, ‘memory’, and other algorithm-specific arguments.
head_inputs_dict (dict): The keyword dictionary args of the bbox_head functions, which is usually empty, or includes enc_outputs_class and enc_outputs_class when the detector support ‘two stage’ or ‘query selection’ strategies.
- Return type
tuple[dict, dict]
- abstract pre_transformer(img_feats: Tuple[Tensor], batch_data_samples: Optional[List[DetDataSample]] = None) Tuple[Dict, Dict] [source]¶
Process image features before feeding them to the transformer.
- Parameters
img_feats (tuple[Tensor]) – Tuple of feature maps from neck. Each feature map has shape (bs, dim, H, W).
batch_data_samples (list[
DetDataSample
], optional) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg. Defaults to None.
- Returns
The first dict contains the inputs of encoder and the second dict contains the inputs of decoder.
encoder_inputs_dict (dict): The keyword args dictionary of self.forward_encoder(), which includes ‘feat’, ‘feat_mask’, ‘feat_pos’, and other algorithm-specific arguments.
decoder_inputs_dict (dict): The keyword args dictionary of self.forward_decoder(), which includes ‘memory_mask’, and other algorithm-specific arguments.
- Return type
tuple[dict, dict]
- predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[DetDataSample] [source]¶
Predict results from a batch of inputs and data samples with post- processing.
- Parameters
batch_inputs (Tensor) – Inputs, has shape (bs, dim, H, W).
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.rescale (bool) – Whether to rescale the results. Defaults to True.
- Returns
Detection results of the input images. Each DetDataSample usually contain ‘pred_instances’. And the pred_instances usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
DetDataSample
]
- class mmdet.models.detectors.Detectron2Wrapper(detector: Union[ConfigDict, dict], bgr_to_rgb: bool = False, rgb_to_bgr: bool = False)[source]¶
Wrapper of a Detectron2 model. Input/output formats of this class follow MMDetection’s convention, so a Detectron2 model can be trained and evaluated in MMDetection.
- Parameters
detector (
ConfigDict
or dict) – The module config of Detectron2.bgr_to_rgb (bool) – whether to convert image from BGR to RGB. Defaults to False.
rgb_to_bgr (bool) – whether to convert image from RGB to BGR. Defaults to False.
- extract_feat(*args, **kwargs)[source]¶
Extract features from images.
extract_feat will not be used in obj:
Detectron2Wrapper
.
- init_weights() None [source]¶
Initialization Backbone.
NOTE: The initialization of other layers are in Detectron2, if users want to change the initialization way, please change the code in Detectron2.
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) Union[dict, tuple] [source]¶
Calculate losses from a batch of inputs and data samples.
The inputs will first convert to the Detectron2 type and feed into D2 models.
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) List[DetDataSample] [source]¶
Predict results from a batch of inputs and data samples with post- processing.
The inputs will first convert to the Detectron2 type and feed into D2 models. And the results will convert back to the MMDet type.
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
Detection results of the input images. Each DetDataSample usually contain ‘pred_instances’. And the
pred_instances
usually contains following keys.scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
DetDataSample
]
- class mmdet.models.detectors.FCOS(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of FCOS
- Parameters
backbone (
ConfigDict
or dict) – The backbone config.neck (
ConfigDict
or dict) – The neck config.bbox_head (
ConfigDict
or dict) – The bbox head config.train_cfg (
ConfigDict
or dict, optional) – The training config of FCOS. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of FCOS. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- class mmdet.models.detectors.FOVEA(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of FoveaBox :param backbone: The backbone config. :type backbone:
ConfigDict
or dict :param neck: The neck config. :type neck:ConfigDict
or dict :param bbox_head: The bbox head config. :type bbox_head:ConfigDict
or dict :param train_cfg: The training configof FOVEA. Defaults to None.
- Parameters
test_cfg (
ConfigDict
or dict, optional) – The testing config of FOVEA. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- class mmdet.models.detectors.FSAF(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of FSAF
- class mmdet.models.detectors.FastRCNN(backbone: Union[ConfigDict, dict], roi_head: Union[ConfigDict, dict], train_cfg: Union[ConfigDict, dict], test_cfg: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Fast R-CNN
- class mmdet.models.detectors.FasterRCNN(backbone: Union[ConfigDict, dict], rpn_head: Union[ConfigDict, dict], roi_head: Union[ConfigDict, dict], train_cfg: Union[ConfigDict, dict], test_cfg: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Faster R-CNN
- class mmdet.models.detectors.GFL(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of GFL
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.train_cfg (
ConfigDict
or dict, optional) – The training config of GFL. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of GFL. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- class mmdet.models.detectors.GLIP(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], language_model: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of GLIP :param backbone: The backbone config. :type backbone:
ConfigDict
or dict :param neck: The neck config. :type neck:ConfigDict
or dict :param bbox_head: The bbox head config. :type bbox_head:ConfigDict
or dict :param language_model: The language model config. :type language_model:ConfigDict
or dict :param train_cfg: The training configof GLIP. Defaults to None.
- Parameters
test_cfg (
ConfigDict
or dict, optional) – The testing config of GLIP. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- get_tokens_and_prompts(original_caption: Union[str, list, tuple], custom_entities: bool = False, enhanced_text_prompts: Optional[Union[ConfigDict, dict]] = None) Tuple[dict, str, list, list] [source]¶
Get the tokens positive and prompts for the caption.
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) Union[dict, list] [source]¶
Calculate losses from a batch of inputs and data samples.
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[DetDataSample] [source]¶
Predict results from a batch of inputs and data samples with post- processing.
- Parameters
batch_inputs (Tensor) – Inputs with shape (N, C, H, W).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results. Defaults to True.
- Returns
Detection results of the input images. Each DetDataSample usually contain ‘pred_instances’. And the
pred_instances
usually contains following keys.- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
label_names (List[str]): Label names of bboxes.
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
DetDataSample
]
- class mmdet.models.detectors.GridRCNN(backbone: Union[ConfigDict, dict], rpn_head: Union[ConfigDict, dict], roi_head: Union[ConfigDict, dict], train_cfg: Union[ConfigDict, dict], test_cfg: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Grid R-CNN.
This detector is the implementation of: - Grid R-CNN (https://arxiv.org/abs/1811.12030) - Grid R-CNN Plus: Faster and Better (https://arxiv.org/abs/1906.05688)
- class mmdet.models.detectors.GroundingDINO(language_model, *args, use_autocast=False, **kwargs)[source]¶
Implementation of `Grounding DINO: Marrying DINO with Grounded Pre- Training for Open-Set Object Detection.
<https://arxiv.org/abs/2303.05499>`_
Code is modified from the official github repo.
- forward_encoder(feat: Tensor, feat_mask: Tensor, feat_pos: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, text_dict: Dict) Dict [source]¶
Forward with Transformer encoder.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py.
- Parameters
feat (Tensor) – Sequential features, has shape (bs, num_feat_points, dim).
feat_mask (Tensor) – ByteTensor, the padding mask of the features, has shape (bs, num_feat_points).
feat_pos (Tensor) – The positional embeddings of the features, has shape (bs, num_feat_points, dim).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor) – The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, …].
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
- Returns
The dictionary of encoder outputs, which includes the memory of the encoder output.
- Return type
dict
- forward_transformer(img_feats: Tuple[Tensor], text_dict: Dict, batch_data_samples: Optional[List[DetDataSample]] = None) Dict [source]¶
Forward process of Transformer.
The forward procedure of the transformer is defined as: ‘pre_transformer’ -> ‘encoder’ -> ‘pre_decoder’ -> ‘decoder’ More details can be found at TransformerDetector.forward_transformer in mmdet/detector/base_detr.py. The difference is that the ground truth in batch_data_samples is required for the pre_decoder to prepare the query of DINO. Additionally, DINO inherits the pre_transformer method and the forward_encoder method of DeformableDETR. More details about the two methods can be found in mmdet/detector/deformable_detr.py.
- Parameters
img_feats (tuple[Tensor]) – Tuple of feature maps from neck. Each feature map has shape (bs, dim, H, W).
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg. Defaults to None.
- Returns
The dictionary of bbox_head function inputs, which always includes the hidden_states of the decoder output and may contain references including the initial and intermediate references.
- Return type
dict
- get_tokens_and_prompts(original_caption: Union[str, list, tuple], custom_entities: bool = False, enhanced_text_prompts: Optional[Union[ConfigDict, dict]] = None) Tuple[dict, str, list] [source]¶
Get the tokens positive and prompts for the caption.
- get_tokens_positive_and_prompts(original_caption: Union[str, list, tuple], custom_entities: bool = False, enhanced_text_prompt: Optional[Union[ConfigDict, dict]] = None, tokens_positive: Optional[list] = None) Tuple[dict, str, Tensor, list] [source]¶
Get the tokens positive and prompts for the caption.
- Parameters
original_caption (str) – The original caption, e.g. ‘bench . car .’
custom_entities (bool, optional) – Whether to use custom entities. If
True
, theoriginal_caption
should be a list of strings, each of which is a word. Defaults to False.
- Returns
The dict is a mapping from each entity id, which is numbered from 1, to its positive token id. The str represents the prompts.
- Return type
Tuple[dict, str, dict, str]
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) Union[dict, list] [source]¶
Calculate losses from a batch of inputs and data samples.
- Parameters
batch_inputs (Tensor) – Input images of shape (bs, dim, H, W). These should usually be mean centered and std scaled.
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict
- pre_decoder(memory: Tensor, memory_mask: Tensor, spatial_shapes: Tensor, memory_text: Tensor, text_token_mask: Tensor, batch_data_samples: Optional[List[DetDataSample]] = None) Tuple[Dict] [source]¶
Prepare intermediate variables before entering Transformer decoder, such as query, query_pos, and reference_points.
- Parameters
memory (Tensor) – The output embeddings of the Transformer encoder, has shape (bs, num_feat_points, dim).
memory_mask (Tensor) – ByteTensor, the padding mask of the memory, has shape (bs, num_feat_points). Will only be used when as_two_stage is True.
spatial_shapes (Tensor) – Spatial shapes of features in all levels. With shape (num_levels, 2), last dimension represents (h, w). Will only be used when as_two_stage is True.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg. Defaults to None.
- Returns
The decoder_inputs_dict and head_inputs_dict.
decoder_inputs_dict (dict): The keyword dictionary args of self.forward_decoder(), which includes ‘query’, ‘memory’, reference_points, and dn_mask. The reference points of decoder input here are 4D boxes, although it has points in its name.
head_inputs_dict (dict): The keyword dictionary args of the bbox_head functions, which includes topk_score, topk_coords, and dn_meta when self.training is True, else is empty.
- Return type
tuple[dict]
- predict(batch_inputs, batch_data_samples, rescale: bool = True)[source]¶
Predict results from a batch of inputs and data samples with post- processing.
- Parameters
batch_inputs (Tensor) – Inputs, has shape (bs, dim, H, W).
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.rescale (bool) – Whether to rescale the results. Defaults to True.
- Returns
Detection results of the input images. Each DetDataSample usually contain ‘pred_instances’. And the pred_instances usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
DetDataSample
]
- class mmdet.models.detectors.HybridTaskCascade(**kwargs)[source]¶
Implementation of HTC
- property with_semantic: bool¶
whether the detector has a semantic head
- Type
bool
- class mmdet.models.detectors.KnowledgeDistillationSingleStageDetector(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], teacher_config: Union[ConfigDict, dict, str, Path], teacher_ckpt: Optional[str] = None, eval_teacher: bool = True, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None)[source]¶
Implementation of Distilling the Knowledge in a Neural Network..
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.teacher_config (
ConfigDict
| dict | str | Path) – Config file path or the config object of teacher model.teacher_ckpt (str, optional) – Checkpoint path of teacher model. If left as None, the model will not load any weights. Defaults to True.
eval_teacher (bool) – Set the train mode for teacher. Defaults to True.
train_cfg (
ConfigDict
or dict, optional) – The training config of ATSS. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of ATSS. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- cuda(device: Optional[str] = None) Module [source]¶
Since teacher_model is registered as a plain object, it is necessary to put the teacher model to cuda when calling
cuda
function.
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.detectors.LAD(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], teacher_backbone: Union[ConfigDict, dict], teacher_neck: Union[ConfigDict, dict], teacher_bbox_head: Union[ConfigDict, dict], teacher_ckpt: Optional[str] = None, eval_teacher: bool = True, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None)[source]¶
Implementation of LAD.
- extract_teacher_feat(batch_inputs: Tensor) Tensor [source]¶
Directly extract teacher features from the backbone+neck.
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- property with_teacher_neck: bool¶
whether the detector has a teacher_neck
- Type
bool
- class mmdet.models.detectors.Mask2Former(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, panoptic_head: Optional[Union[ConfigDict, dict]] = None, panoptic_fusion_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Masked-attention Mask Transformer for Universal Image Segmentation.
- class mmdet.models.detectors.MaskFormer(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, panoptic_head: Optional[Union[ConfigDict, dict]] = None, panoptic_fusion_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Per-Pixel Classification is NOT All You Need for Semantic Segmentation.
- add_pred_to_datasample(data_samples: List[DetDataSample], results_list: List[dict]) List[DetDataSample] [source]¶
Add predictions to DetDataSample.
- Parameters
data_samples (list[
DetDataSample
], optional) – A batch of data samples that contain annotations and predictions.results_list (List[dict]) – Instance segmentation, segmantic segmentation and panoptic segmentation results.
- Returns
Detection results of the input images. Each DetDataSample usually contain ‘pred_instances’ and pred_panoptic_seg. And the
pred_instances
usually contains following keys.- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
And the
pred_panoptic_seg
contains the following key- sem_seg (Tensor): panoptic segmentation mask, has a
shape (1, h, w).
- Return type
list[
DetDataSample
]
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) Dict[str, Tensor] [source]¶
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
a dictionary of loss components
- Return type
dict[str, Tensor]
- predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[DetDataSample] [source]¶
Predict results from a batch of inputs and data samples with post- processing.
- Parameters
batch_inputs (Tensor) – Inputs with shape (N, C, H, W).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results. Defaults to True.
- Returns
Detection results of the input images. Each DetDataSample usually contain ‘pred_instances’ and pred_panoptic_seg. And the
pred_instances
usually contains following keys.- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
And the
pred_panoptic_seg
contains the following key- sem_seg (Tensor): panoptic segmentation mask, has a
shape (1, h, w).
- Return type
list[
DetDataSample
]
- class mmdet.models.detectors.MaskRCNN(backbone: ConfigDict, rpn_head: ConfigDict, roi_head: ConfigDict, train_cfg: ConfigDict, test_cfg: ConfigDict, neck: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Mask R-CNN
- class mmdet.models.detectors.MaskScoringRCNN(backbone: Union[ConfigDict, dict], rpn_head: Union[ConfigDict, dict], roi_head: Union[ConfigDict, dict], train_cfg: Union[ConfigDict, dict], test_cfg: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Mask Scoring RCNN.
- class mmdet.models.detectors.NASFCOS(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of NAS-FCOS: Fast Neural Architecture Search for Object Detection.
- Parameters
backbone (
ConfigDict
or dict) – The backbone config.neck (
ConfigDict
or dict) – The neck config.bbox_head (
ConfigDict
or dict) – The bbox head config.train_cfg (
ConfigDict
or dict, optional) – The training config of NASFCOS. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of NASFCOS. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- class mmdet.models.detectors.PAA(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of PAA
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.train_cfg (
ConfigDict
or dict, optional) – The training config of PAA. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of PAA. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- class mmdet.models.detectors.PanopticFPN(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, rpn_head: Optional[Union[ConfigDict, dict]] = None, roi_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, semantic_head: Optional[Union[ConfigDict, dict]] = None, panoptic_fusion_head: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Panoptic feature pyramid networks
- class mmdet.models.detectors.PointRend(backbone: ConfigDict, rpn_head: ConfigDict, roi_head: ConfigDict, train_cfg: ConfigDict, test_cfg: ConfigDict, neck: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
PointRend: Image Segmentation as Rendering
This detector is the implementation of PointRend.
- class mmdet.models.detectors.QueryInst(backbone: Union[ConfigDict, dict], rpn_head: Union[ConfigDict, dict], roi_head: Union[ConfigDict, dict], train_cfg: Union[ConfigDict, dict], test_cfg: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Instances as Queries
- class mmdet.models.detectors.RPN(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], rpn_head: Union[ConfigDict, dict], train_cfg: Union[ConfigDict, dict], test_cfg: Union[ConfigDict, dict], data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, **kwargs)[source]¶
Implementation of Region Proposal Network.
- Parameters
backbone (
ConfigDict
or dict) – The backbone config.neck (
ConfigDict
or dict) – The neck config.bbox_head (
ConfigDict
or dict) – The bbox head config.train_cfg (
ConfigDict
or dict, optional) – The training config.test_cfg (
ConfigDict
or dict, optional) – The testing config.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
Calculate losses from a batch of inputs and data samples.
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict[str, Tensor]
- class mmdet.models.detectors.RTMDet(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, use_syncbn: bool = True)[source]¶
Implementation of RTMDet.
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.train_cfg (
ConfigDict
or dict, optional) – The training config of ATSS. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of ATSS. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.use_syncbn (bool) – Whether to use SyncBatchNorm. Defaults to True.
- class mmdet.models.detectors.RepPointsDetector(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
RepPoints: Point Set Representation for Object Detection.
This detector is the implementation of: - RepPoints detector (https://arxiv.org/pdf/1904.11490)
- class mmdet.models.detectors.RetinaNet(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of RetinaNet
- class mmdet.models.detectors.SOLO(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, bbox_head: Optional[Union[ConfigDict, dict]] = None, mask_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
- class mmdet.models.detectors.SOLOv2(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, bbox_head: Optional[Union[ConfigDict, dict]] = None, mask_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
- class mmdet.models.detectors.SemiBaseDetector(detector: Union[ConfigDict, dict], semi_train_cfg: Optional[Union[ConfigDict, dict]] = None, semi_test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Base class for semi-supervised detectors.
Semi-supervised detectors typically consisting of a teacher model updated by exponential moving average and a student model updated by gradient descent.
- Parameters
detector (
ConfigDict
or dict) – The detector config.semi_train_cfg (
ConfigDict
or dict, optional) – The semi-supervised training config.semi_test_cfg (
ConfigDict
or dict, optional) – The semi-supervised testing config.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- extract_feat(batch_inputs: Tensor) Tuple[Tensor] [source]¶
Extract features.
- Parameters
batch_inputs (Tensor) – Image tensor with shape (N, C, H ,W).
- Returns
Multi-level features that may have different resolutions.
- Return type
tuple[Tensor]
- get_pseudo_instances(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) Tuple[List[DetDataSample], Optional[dict]] [source]¶
Get pseudo instances from teacher model.
- loss(multi_batch_inputs: Dict[str, Tensor], multi_batch_data_samples: Dict[str, List[DetDataSample]]) dict [source]¶
Calculate losses from multi-branch inputs and data samples.
- Parameters
multi_batch_inputs (Dict[str, Tensor]) – The dict of multi-branch input images, each value with shape (N, C, H, W). Each value should usually be mean centered and std scaled.
multi_batch_data_samples (Dict[str, List[
DetDataSample
]]) – The dict of multi-branch data samples.
- Returns
A dictionary of loss components
- Return type
dict
- loss_by_gt_instances(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
Calculate losses from a batch of inputs and ground-truth data samples.
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict
- loss_by_pseudo_instances(batch_inputs: Tensor, batch_data_samples: List[DetDataSample], batch_info: Optional[dict] = None) dict [source]¶
Calculate losses from a batch of inputs and pseudo data samples.
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg, which are pseudo_instance or pseudo_panoptic_seg or pseudo_sem_seg in fact.batch_info (dict) – Batch information of teacher model forward propagation process. Defaults to None.
- Returns
A dictionary of loss components
- Return type
dict
- predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) List[DetDataSample] [source]¶
Predict results from a batch of inputs and data samples with post- processing.
- Parameters
batch_inputs (Tensor) – Inputs with shape (N, C, H, W).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results. Defaults to True.
- Returns
Return the detection results of the input images. The returns value is DetDataSample, which usually contain ‘pred_instances’. And the
pred_instances
usually contains following keys.- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
DetDataSample
]
- project_pseudo_instances(batch_pseudo_instances: List[DetDataSample], batch_data_samples: List[DetDataSample]) List[DetDataSample] [source]¶
Project pseudo instances.
- class mmdet.models.detectors.SingleStageDetector(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, bbox_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Base class for single-stage detectors.
Single-stage detectors directly and densely predict bounding boxes on the output features of the backbone+neck.
- extract_feat(batch_inputs: Tensor) Tuple[Tensor] [source]¶
Extract features.
- Parameters
batch_inputs (Tensor) – Image tensor with shape (N, C, H ,W).
- Returns
Multi-level features that may have different resolutions.
- Return type
tuple[Tensor]
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) Union[dict, list] [source]¶
Calculate losses from a batch of inputs and data samples.
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[DetDataSample] [source]¶
Predict results from a batch of inputs and data samples with post- processing.
- Parameters
batch_inputs (Tensor) – Inputs with shape (N, C, H, W).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results. Defaults to True.
- Returns
Detection results of the input images. Each DetDataSample usually contain ‘pred_instances’. And the
pred_instances
usually contains following keys.- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
DetDataSample
]
- class mmdet.models.detectors.SoftTeacher(detector: Union[ConfigDict, dict], semi_train_cfg: Optional[Union[ConfigDict, dict]] = None, semi_test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of End-to-End Semi-Supervised Object Detection with Soft Teacher
- Parameters
detector (
ConfigDict
or dict) – The detector config.semi_train_cfg (
ConfigDict
or dict, optional) – The semi-supervised training config.semi_test_cfg (
ConfigDict
or dict, optional) – The semi-supervised testing config.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
- compute_uncertainty_with_aug(x: Tuple[Tensor], batch_data_samples: List[DetDataSample]) List[Tensor] [source]¶
Compute uncertainty with augmented bboxes.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg, which are pseudo_instance or pseudo_panoptic_seg or pseudo_sem_seg in fact.
- Returns
A list of uncertainty for pseudo bboxes.
- Return type
list[Tensor]
- get_pseudo_instances(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) Tuple[List[DetDataSample], Optional[dict]] [source]¶
Get pseudo instances from teacher model.
- loss_by_pseudo_instances(batch_inputs: Tensor, batch_data_samples: List[DetDataSample], batch_info: Optional[dict] = None) dict [source]¶
Calculate losses from a batch of inputs and pseudo data samples.
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg, which are pseudo_instance or pseudo_panoptic_seg or pseudo_sem_seg in fact.batch_info (dict) – Batch information of teacher model forward propagation process. Defaults to None.
- Returns
A dictionary of loss components
- Return type
dict
- rcnn_cls_loss_by_pseudo_instances(x: Tuple[Tensor], unsup_rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample], batch_info: dict) dict [source]¶
Calculate classification loss from a batch of inputs and pseudo data samples.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
unsup_rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg, which are pseudo_instance or pseudo_panoptic_seg or pseudo_sem_seg in fact.batch_info (dict) – Batch information of teacher model forward propagation process.
- Returns
- A dictionary of rcnn
classification loss components
- Return type
dict[str, Tensor]
- rcnn_reg_loss_by_pseudo_instances(x: Tuple[Tensor], unsup_rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) dict [source]¶
Calculate rcnn regression loss from a batch of inputs and pseudo data samples.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
unsup_rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg, which are pseudo_instance or pseudo_panoptic_seg or pseudo_sem_seg in fact.
- Returns
- A dictionary of rcnn
regression loss components
- Return type
dict[str, Tensor]
- rpn_loss_by_pseudo_instances(x: Tuple[Tensor], batch_data_samples: List[DetDataSample]) dict [source]¶
Calculate rpn loss from a batch of inputs and pseudo data samples.
- Parameters
x (tuple[Tensor]) – Features from FPN.
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg, which are pseudo_instance or pseudo_panoptic_seg or pseudo_sem_seg in fact.
- Returns
A dictionary of rpn loss components
- Return type
dict
- class mmdet.models.detectors.SparseRCNN(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, rpn_head: Optional[Union[ConfigDict, dict]] = None, roi_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
- class mmdet.models.detectors.TOOD(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of TOOD: Task-aligned One-stage Object Detection.
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.train_cfg (
ConfigDict
or dict, optional) – The training config of TOOD. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of TOOD. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- class mmdet.models.detectors.TridentFasterRCNN(backbone: Union[ConfigDict, dict], rpn_head: Union[ConfigDict, dict], roi_head: Union[ConfigDict, dict], train_cfg: Union[ConfigDict, dict], test_cfg: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of TridentNet
- aug_test(imgs, img_metas, rescale=False)[source]¶
Test with augmentations.
If rescale is False, then returned bboxes and masks will fit the scale of imgs[0].
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
Copy the
batch_data_samples
to fit multi-branch.
- predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[DetDataSample] [source]¶
Copy the
batch_data_samples
to fit multi-branch.
- class mmdet.models.detectors.TwoStageDetector(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, rpn_head: Optional[Union[ConfigDict, dict]] = None, roi_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Base class for two-stage detectors.
Two-stage detectors typically consisting of a region proposal network and a task-specific regression head.
- extract_feat(batch_inputs: Tensor) Tuple[Tensor] [source]¶
Extract features.
- Parameters
batch_inputs (Tensor) – Image tensor with shape (N, C, H ,W).
- Returns
Multi-level features that may have different resolutions.
- Return type
tuple[Tensor]
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
Calculate losses from a batch of inputs and data samples.
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (List[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict
- predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[DetDataSample] [source]¶
Predict results from a batch of inputs and data samples with post- processing.
- Parameters
batch_inputs (Tensor) – Inputs with shape (N, C, H, W).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results. Defaults to True.
- Returns
Return the detection results of the input images. The returns value is DetDataSample, which usually contain ‘pred_instances’. And the
pred_instances
usually contains following keys.- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
DetDataSample
]
- property with_roi_head: bool¶
whether the detector has a RoI head
- Type
bool
- property with_rpn: bool¶
whether the detector has RPN
- Type
bool
- class mmdet.models.detectors.TwoStagePanopticSegmentor(backbone: Union[ConfigDict, dict], neck: Optional[Union[ConfigDict, dict]] = None, rpn_head: Optional[Union[ConfigDict, dict]] = None, roi_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, semantic_head: Optional[Union[ConfigDict, dict]] = None, panoptic_fusion_head: Optional[Union[ConfigDict, dict]] = None)[source]¶
Base class of Two-stage Panoptic Segmentor.
As well as the components in TwoStageDetector, Panoptic Segmentor has extra semantic_head and panoptic_fusion_head.
- add_pred_to_datasample(data_samples: List[DetDataSample], results_list: List[PixelData]) List[DetDataSample] [source]¶
Add predictions to DetDataSample.
- Parameters
data_samples (list[
DetDataSample
]) – The annotation data of every samples.results_list (List[PixelData]) – Panoptic segmentation results of each image.
- Returns
- Return the packed panoptic segmentation
results of input images. Each DetDataSample usually contains ‘pred_panoptic_seg’. And the ‘pred_panoptic_seg’ has a key
sem_seg
, which is a tensor of shape (1, h, w).
- Return type
List[
DetDataSample
]
- loss(batch_inputs: Tensor, batch_data_samples: List[DetDataSample]) dict [source]¶
- Parameters
batch_inputs (Tensor) – Input images of shape (N, C, H, W). These should usually be mean centered and std scaled.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components.
- Return type
dict
- predict(batch_inputs: Tensor, batch_data_samples: List[DetDataSample], rescale: bool = True) List[DetDataSample] [source]¶
Predict results from a batch of inputs and data samples with post- processing.
- Parameters
batch_inputs (Tensor) – Inputs with shape (N, C, H, W).
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results. Defaults to True.
- Returns
- Return the packed panoptic segmentation
results of input images. Each DetDataSample usually contains ‘pred_panoptic_seg’. And the ‘pred_panoptic_seg’ has a key
sem_seg
, which is a tensor of shape (1, h, w).
- Return type
List[
DetDataSample
]
- property with_panoptic_fusion_head: bool¶
whether the detector has panoptic fusion head
- Type
bool
- property with_semantic_head: bool¶
whether the detector has semantic head
- Type
bool
- class mmdet.models.detectors.VFNet(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of `VarifocalNet (VFNet).<https://arxiv.org/abs/2008.13367>`_
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.train_cfg (
ConfigDict
or dict, optional) – The training config of VFNet. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of VFNet. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- class mmdet.models.detectors.YOLACT(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], mask_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of YOLACT
- class mmdet.models.detectors.YOLOF(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of You Only Look One-level Feature
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.train_cfg (
ConfigDict
or dict, optional) – The training config of YOLOF. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of YOLOF. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Model preprocessing config for processing the input data. it usually includesto_rgb
,pad_size_divisor
,pad_value
,mean
andstd
. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- class mmdet.models.detectors.YOLOV3(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of Yolov3: An incremental improvement
- Parameters
backbone (
ConfigDict
or dict) – The backbone module.neck (
ConfigDict
or dict) – The neck module.bbox_head (
ConfigDict
or dict) – The bbox head module.train_cfg (
ConfigDict
or dict, optional) – The training config of YOLOX. Default: None.test_cfg (
ConfigDict
or dict, optional) – The testing config of YOLOX. Default: None.data_preprocessor (
ConfigDict
or dict, optional) – Model preprocessing config for processing the input data. it usually includesto_rgb
,pad_size_divisor
,pad_value
,mean
andstd
. Defaults to None.init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- class mmdet.models.detectors.YOLOX(backbone: Union[ConfigDict, dict], neck: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict], train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, data_preprocessor: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Implementation of YOLOX: Exceeding YOLO Series in 2021
- Parameters
backbone (
ConfigDict
or dict) – The backbone config.neck (
ConfigDict
or dict) – The neck config.bbox_head (
ConfigDict
or dict) – The bbox head config.train_cfg (
ConfigDict
or dict, optional) – The training config of YOLOX. Defaults to None.test_cfg (
ConfigDict
or dict, optional) – The testing config of YOLOX. Defaults to None.data_preprocessor (
ConfigDict
or dict, optional) – Config ofDetDataPreprocessor
to process the input data. Defaults to None.
- :param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict. Defaults to None.
layers¶
- class mmdet.models.layers.AdaptiveAvgPool2d(output_size: Union[int, None, Tuple[Optional[int], ...]])[source]¶
Handle empty batch dimension to AdaptiveAvgPool2d.
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.layers.AdaptivePadding(kernel_size=1, stride=1, dilation=1, padding='corner')[source]¶
Applies padding to input (if needed) so that input can get fully covered by filter you specified. It support two modes “same” and “corner”. The “same” mode is same with “SAME” padding mode in TensorFlow, pad zero around input. The “corner” mode would pad zero to bottom right.
- Parameters
kernel_size (int | tuple) – Size of the kernel:
stride (int | tuple) – Stride of the filter. Default: 1:
dilation (int | tuple) – Spacing between kernel elements. Default: 1
padding (str) – Support “same” and “corner”, “corner” mode would pad zero to bottom right, and “same” mode would pad zero around input. Default: “corner”.
Example
>>> kernel_size = 16 >>> stride = 16 >>> dilation = 1 >>> input = torch.rand(1, 1, 15, 17) >>> adap_pad = AdaptivePadding( >>> kernel_size=kernel_size, >>> stride=stride, >>> dilation=dilation, >>> padding="corner") >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32) >>> input = torch.rand(1, 1, 16, 17) >>> out = adap_pad(input) >>> assert (out.shape[2], out.shape[3]) == (16, 32)
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.layers.CSPLayer(in_channels: int, out_channels: int, expand_ratio: float = 0.5, num_blocks: int = 1, add_identity: bool = True, use_depthwise: bool = False, use_cspnext_block: bool = False, channel_attention: bool = False, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg: Union[ConfigDict, dict] = {'type': 'Swish'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Cross Stage Partial Layer.
- Parameters
in_channels (int) – The input channels of the CSP layer.
out_channels (int) – The output channels of the CSP layer.
expand_ratio (float) – Ratio to adjust the number of channels of the hidden layer. Defaults to 0.5.
num_blocks (int) – Number of blocks. Defaults to 1.
add_identity (bool) – Whether to add identity in blocks. Defaults to True.
use_cspnext_block (bool) – Whether to use CSPNeXt block. Defaults to False.
use_depthwise (bool) – Whether to use depthwise separable convolution in blocks. Defaults to False.
channel_attention (bool) – Whether to add channel attention in each stage. Defaults to True.
conv_cfg (dict, optional) – Config dict for convolution layer. Defaults to None, which means using conv2d.
norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type=’BN’)
act_cfg (dict) – Config dict for activation layer. Defaults to dict(type=’Swish’)
- :param init_cfg (
ConfigDict
or dict or list[dict] or: list[ConfigDict
], optional): Initialization config dict. Defaults to None.
- class mmdet.models.layers.CdnQueryGenerator(num_classes: int, embed_dims: int, num_matching_queries: int, label_noise_scale: float = 0.5, box_noise_scale: float = 1.0, group_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Implement query generator of the Contrastive denoising (CDN) proposed in DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection
Code is modified from the official github repo.
- Parameters
num_classes (int) – Number of object classes.
embed_dims (int) – The embedding dimensions of the generated queries.
num_matching_queries (int) – The queries number of the matching part. Used for generating dn_mask.
label_noise_scale (float) – The scale of label noise, defaults to 0.5.
box_noise_scale (float) – The scale of box noise, defaults to 1.0.
group_cfg (
ConfigDict
or dict, optional) – The config of the denoising queries grouping, includes dynamic, num_dn_queries, and num_groups. Two grouping strategies, ‘static dn groups’ and ‘dynamic dn groups’, are supported. When dynamic is False, the num_groups should be set, and the number of denoising query groups will always be num_groups. When dynamic is True, the num_dn_queries should be set, and the group number will be dynamic to ensure that the denoising queries number will not exceed num_dn_queries to prevent large fluctuations of memory. Defaults to None.
- collate_dn_queries(input_label_query: Tensor, input_bbox_query: Tensor, batch_idx: Tensor, batch_size: int, num_groups: int) Tuple[Tensor] [source]¶
Collate generated queries to obtain batched dn queries.
The strategy for query collation is as follow:
input_queries (num_target_total, query_dim) P_A1 P_B1 P_B2 N_A1 N_B1 N_B2 P'A1 P'B1 P'B2 N'A1 N'B1 N'B2 |________ group1 ________| |________ group2 ________| | V P_A1 Pad0 N_A1 Pad0 P'A1 Pad0 N'A1 Pad0 P_B1 P_B2 N_B1 N_B2 P'B1 P'B2 N'B1 N'B2 |____ group1 ____| |____ group2 ____| batched_queries (batch_size, max_num_target, query_dim) where query_dim is 4 for bbox and self.embed_dims for label. Notation: _-group 1; '-group 2; A-Sample1(has 1 target); B-sample2(has 2 targets)
- Parameters
input_label_query (Tensor) – The generated label queries of all targets, has shape (num_target_total, embed_dims) where num_target_total = sum(num_target_list).
input_bbox_query (Tensor) – The generated bbox queries of all targets, has shape (num_target_total, 4) with the last dimension arranged as (cx, cy, w, h).
batch_idx (Tensor) – The batch index of the corresponding sample for each target, has shape (num_target_total).
batch_size (int) – The size of the input batch.
num_groups (int) – The number of denoising query groups.
- Returns
Output batched label and bbox queries. - batched_label_query (Tensor): The output batched label queries,
has shape (batch_size, max_num_target, embed_dims).
batched_bbox_query (Tensor): The output batched bbox queries, has shape (batch_size, max_num_target, 4) with the last dimension arranged as (cx, cy, w, h).
- Return type
tuple[Tensor]
- generate_dn_bbox_query(gt_bboxes: Tensor, num_groups: int) Tensor [source]¶
Generate noisy bboxes and their query embeddings.
The strategy for generating noisy bboxes is as follow:
+--------------------+ | negative | | +----------+ | | | positive | | | | +-----|----+------------+ | | | | | | | +----+-----+ | | | | | | +---------+----------+ | | | | gt bbox | | | | +---------+----------+ | | | | | | +----+-----+ | | | | | | | +-------------|--- +----+ | | | | positive | | | +----------+ | | negative | +--------------------+ The random noise is added to the top-left and down-right point positions, hence, normalized (x, y, x, y) format of bboxes are required. The noisy bboxes of positive queries have the points both within the inner square, while those of negative queries have the points both between the inner and outer squares.
Besides, the length of outer square is twice as long as that of the inner square, i.e., self.box_noise_scale * w_or_h / 2. NOTE The noise is added to all the bboxes. Moreover, there is still unconsidered case when one point is within the positive square and the others is between the inner and outer squares.
- Parameters
gt_bboxes (Tensor) – The concatenated gt bboxes of all samples in the batch, has shape (num_target_total, 4) with the last dimension arranged as (cx, cy, w, h) where num_target_total = sum(num_target_list).
num_groups (int) – The number of denoising query groups.
- Returns
The output noisy bboxes, which are embedded by normalized (cx, cy, w, h) format bboxes going through inverse_sigmoid, has shape (num_noisy_targets, 4) with the last dimension arranged as (cx, cy, w, h), where num_noisy_targets = num_target_total * num_groups * 2.
- Return type
Tensor
- generate_dn_label_query(gt_labels: Tensor, num_groups: int) Tensor [source]¶
Generate noisy labels and their query embeddings.
The strategy for generating noisy labels is: Randomly choose labels of self.label_noise_scale * 0.5 proportion and override each of them with a random object category label.
NOTE Not add noise to all labels. Besides, the self.label_noise_scale * 0.5 arg is the ratio of the chosen positions, which is higher than the actual proportion of noisy labels, because the labels to override may be correct. And the gap becomes larger as the number of target categories decreases. The users should notice this and modify the scale arg or the corresponding logic according to specific dataset.
- Parameters
gt_labels (Tensor) – The concatenated gt labels of all samples in the batch, has shape (num_target_total, ) where num_target_total = sum(num_target_list).
num_groups (int) – The number of denoising query groups.
- Returns
The query embeddings of noisy labels, has shape (num_noisy_targets, embed_dims), where num_noisy_targets = num_target_total * num_groups * 2.
- Return type
Tensor
- generate_dn_mask(max_num_target: int, num_groups: int, device: Union[device, str]) Tensor [source]¶
Generate attention mask to prevent information leakage from different denoising groups and matching parts.
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 max_num_target |_| |_________| num_matching_queries |_____________| num_denoising_queries 1 -> True (Masked), means 'can not see'. 0 -> False (UnMasked), means 'can see'.
- Parameters
max_num_target (int) – The max target number of the input batch samples.
num_groups (int) – The number of denoising query groups.
(obj (device) – device or str): The device of generated mask.
- Returns
The attention mask to prevent information leakage from different denoising groups and matching parts, will be used as self_attn_mask of the decoder, has shape (num_queries_total, num_queries_total), where num_queries_total is the sum of num_denoising_queries and num_matching_queries.
- Return type
Tensor
- get_num_groups(max_num_target: Optional[int] = None) int [source]¶
Calculate denoising query groups number.
Two grouping strategies, ‘static dn groups’ and ‘dynamic dn groups’, are supported. When self.dynamic_dn_groups is False, the number of denoising query groups will always be self.num_groups. When self.dynamic_dn_groups is True, the group number will be dynamic, ensuring the denoising queries number will not exceed self.num_dn_queries to prevent large fluctuations of memory.
NOTE The num_group is shared for different samples in a batch. When the target numbers in the samples varies, the denoising queries of the samples containing fewer targets are padded to the max length.
- Parameters
max_num_target (int, optional) – The max target number of the batch samples. It will only be used when self.dynamic_dn_groups is True. Defaults to None.
- Returns
The denoising group number of the current batch.
- Return type
int
- class mmdet.models.layers.ChannelAttention(channels: int, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Channel attention Module.
- Parameters
channels (int) – The input (and output) channels of the attention layer.
init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to None
- class mmdet.models.layers.ConditionalAttention(embed_dims: int, num_heads: int, attn_drop: float = 0.0, proj_drop: float = 0.0, cross_attn: bool = False, keep_query_pos: bool = False, batch_first: bool = True, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
A wrapper of conditional attention, dropout and residual connection.
- Parameters
embed_dims (int) – The embedding dimension.
num_heads (int) – Parallel attention heads.
attn_drop (float) – A Dropout layer on attn_output_weights. Default: 0.0.
proj_drop – A Dropout layer after nn.MultiheadAttention. Default: 0.0.
cross_attn (bool) – Whether the attention module is for cross attention. Default: False
keep_query_pos (bool) – Whether to transform query_pos before cross attention. Default: False.
batch_first (bool) –
When it is True, Key, Query and Value are shape of (batch, n, embed_dim), otherwise (n, batch, embed_dim).
Default: True.
(obj (init_cfg) – mmcv.ConfigDict): The Config for initialization. Default: None.
- forward(query: Tensor, key: Tensor, query_pos: Optional[Tensor] = None, ref_sine_embed: Optional[Tensor] = None, key_pos: Optional[Tensor] = None, attn_mask: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None, is_first: bool = False) Tensor [source]¶
Forward function for ConditionalAttention.
- Parameters
query (Tensor) – The input query with shape [bs, num_queries, embed_dims].
key (Tensor) – The key tensor with shape [bs, num_keys, embed_dims]. If None, the query will be used. Defaults to None.
query_pos (Tensor) – The positional encoding for query in self attention, with the same shape as x. If not None, it will be added to x before forward function. Defaults to None.
query_sine_embed (Tensor) – The positional encoding for query in cross attention, with the same shape as x. If not None, it will be added to x before forward function. Defaults to None.
key_pos (Tensor) – The positional encoding for key, with the same shape as key. Defaults to None. If not None, it will be added to key before forward function. If None, and query_pos has the same shape as key, then query_pos will be used for key_pos. Defaults to None.
attn_mask (Tensor) – ByteTensor mask with shape [num_queries, num_keys]. Same in nn.MultiheadAttention.forward. Defaults to None.
key_padding_mask (Tensor) – ByteTensor with shape [bs, num_keys]. Defaults to None.
is_first (bool) – A indicator to tell whether the current layer is the first layer of the decoder. Defaults to False.
- Returns
forwarded results with shape [bs, num_queries, embed_dims].
- Return type
Tensor
- forward_attn(query: Tensor, key: Tensor, value: Tensor, attn_mask: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None) Tuple[Tensor] [source]¶
Forward process for ConditionalAttention.
- Parameters
query (Tensor) – The input query with shape [bs, num_queries, embed_dims].
key (Tensor) – The key tensor with shape [bs, num_keys, embed_dims]. If None, the query will be used. Defaults to None.
value (Tensor) – The value tensor with same shape as key. Same in nn.MultiheadAttention.forward. Defaults to None. If None, the key will be used.
attn_mask (Tensor) – ByteTensor mask with shape [num_queries, num_keys]. Same in nn.MultiheadAttention.forward. Defaults to None.
key_padding_mask (Tensor) – ByteTensor with shape [bs, num_keys]. Defaults to None.
- Returns
Attention outputs of shape \((N, L, E)\), where \(N\) is the batch size, \(L\) is the target sequence length , and \(E\) is the embedding dimension embed_dim. Attention weights per head of shape :math:` (num_heads, L, S)`. where \(N\) is batch size, \(L\) is target sequence length, and \(S\) is the source sequence length.
- Return type
Tuple[Tensor]
- class mmdet.models.layers.ConditionalDetrTransformerDecoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], post_norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, return_intermediate: bool = True, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Decoder of Conditional DETR.
- forward(query: Tensor, key: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, key_pos: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None)[source]¶
Forward function of decoder.
- Parameters
query (Tensor) – The input query with shape (bs, num_queries, dim).
key (Tensor) – The input key with shape (bs, num_keys, dim) If None, the query will be used. Defaults to None.
query_pos (Tensor) – The positional encoding for query, with the same shape as query. If not None, it will be added to query before forward function. Defaults to None.
key_pos (Tensor) – The positional encoding for key, with the same shape as key. If not None, it will be added to key before forward function. If None, and query_pos has the same shape as key, then query_pos will be used as key_pos. Defaults to None.
key_padding_mask (Tensor) – ByteTensor with shape (bs, num_keys). Defaults to None.
- Returns
forwarded results with shape (num_decoder_layers, bs, num_queries, dim) if return_intermediate is True, otherwise with shape (1, bs, num_queries, dim). References with shape (bs, num_queries, 2).
- Return type
List[Tensor]
- class mmdet.models.layers.ConditionalDetrTransformerDecoderLayer(self_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, cross_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, ffn_cfg: Optional[Union[ConfigDict, dict]] = {'act_cfg': {'inplace': True, 'type': 'ReLU'}, 'embed_dims': 256, 'feedforward_channels': 1024, 'ffn_drop': 0.0, 'num_fcs': 2}, norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Implements decoder layer in Conditional DETR transformer.
- forward(query: Tensor, key: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, key_pos: Optional[Tensor] = None, self_attn_masks: Optional[Tensor] = None, cross_attn_masks: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None, ref_sine_embed: Optional[Tensor] = None, is_first: bool = False)[source]¶
- Parameters
query (Tensor) – The input query, has shape (bs, num_queries, dim)
key (Tensor, optional) – The input key, has shape (bs, num_keys, dim). If None, the query will be used. Defaults to None.
query_pos (Tensor, optional) – The positional encoding for query, has the same shape as query. If not None, it will be added to query before forward function. Defaults to None.
ref_sine_embed (Tensor) – The positional encoding for query in cross attention, with the same shape as x. Defaults to None.
key_pos (Tensor, optional) – The positional encoding for key, has the same shape as key. If not None, it will be added to key before forward function. If None, and query_pos has the same shape as key, then query_pos will be used for key_pos. Defaults to None.
self_attn_masks (Tensor, optional) – ByteTensor mask, has shape (num_queries, num_keys), Same in nn.MultiheadAttention. forward. Defaults to None.
cross_attn_masks (Tensor, optional) – ByteTensor mask, has shape (num_queries, num_keys), Same in nn.MultiheadAttention. forward. Defaults to None.
key_padding_mask (Tensor, optional) – ByteTensor, has shape (bs, num_keys). Defaults to None.
is_first (bool) – A indicator to tell whether the current layer is the first layer of the decoder. Defaults to False.
- Returns
Forwarded results, has shape (bs, num_queries, dim).
- Return type
Tensor
- class mmdet.models.layers.ConvUpsample(in_channels, inner_channels, num_layers=1, num_upsample=None, conv_cfg=None, norm_cfg=None, init_cfg=None, **kwargs)[source]¶
ConvUpsample performs 2x upsampling after Conv.
There are several ConvModule layers. In the first few layers, upsampling will be applied after each layer of convolution. The number of upsampling must be no more than the number of ConvModule layers.
- Parameters
in_channels (int) – Number of channels in the input feature map.
inner_channels (int) – Number of channels produced by the convolution.
num_layers (int) – Number of convolution layers.
num_upsample (int | optional) – Number of upsampling layer. Must be no more than num_layers. Upsampling will be applied after the first
num_upsample
layers of convolution. Default:num_layers
.conv_cfg (dict) – Config dict for convolution layer. Default: None, which means using conv2d.
norm_cfg (dict) – Config dict for normalization layer. Default: None.
init_cfg (dict) – Config dict for initialization. Default: None.
kwargs (key word augments) – Other augments used in ConvModule.
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.layers.DABDetrTransformerDecoder(*args, query_dim: int = 4, query_scale_type: str = 'cond_elewise', with_modulated_hw_attn: bool = True, **kwargs)[source]¶
Decoder of DAB-DETR.
- Parameters
query_dim (int) – The last dimension of query pos, 4 for anchor format, 2 for point format. Defaults to 4.
query_scale_type (str) – Type of transformation applied to content query. Defaults to cond_elewise.
with_modulated_hw_attn (bool) – Whether to inject h&w info during cross conditional attention. Defaults to True.
- forward(query: Tensor, key: Tensor, query_pos: Tensor, key_pos: Tensor, reg_branches: Module, key_padding_mask: Optional[Tensor] = None, **kwargs) List[Tensor] [source]¶
Forward function of decoder.
- Parameters
query (Tensor) – The input query with shape (bs, num_queries, dim).
key (Tensor) – The input key with shape (bs, num_keys, dim).
query_pos (Tensor) – The positional encoding for query, with the same shape as query.
key_pos (Tensor) – The positional encoding for key, with the same shape as key.
reg_branches (nn.Module) – The regression branch for dynamically updating references in each layer.
key_padding_mask (Tensor) – ByteTensor with shape (bs, num_keys). Defaults to None.
- Returns
forwarded results with shape (num_decoder_layers, bs, num_queries, dim) if return_intermediate is True, otherwise with shape (1, bs, num_queries, dim). references with shape (num_decoder_layers, bs, num_queries, 2/4).
- Return type
List[Tensor]
- class mmdet.models.layers.DABDetrTransformerDecoderLayer(self_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, cross_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, ffn_cfg: Optional[Union[ConfigDict, dict]] = {'act_cfg': {'inplace': True, 'type': 'ReLU'}, 'embed_dims': 256, 'feedforward_channels': 1024, 'ffn_drop': 0.0, 'num_fcs': 2}, norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Implements decoder layer in DAB-DETR transformer.
- forward(query: Tensor, key: Tensor, query_pos: Tensor, key_pos: Tensor, ref_sine_embed: Optional[Tensor] = None, self_attn_masks: Optional[Tensor] = None, cross_attn_masks: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None, is_first: bool = False, **kwargs) Tensor [source]¶
- Parameters
query (Tensor) – The input query with shape [bs, num_queries, dim].
key (Tensor) – The key tensor with shape [bs, num_keys, dim].
query_pos (Tensor) – The positional encoding for query in self attention, with the same shape as x.
key_pos (Tensor) – The positional encoding for key, with the same shape as key.
ref_sine_embed (Tensor) – The positional encoding for query in cross attention, with the same shape as x. Defaults to None.
self_attn_masks (Tensor) – ByteTensor mask with shape [num_queries, num_keys]. Same in nn.MultiheadAttention.forward. Defaults to None.
cross_attn_masks (Tensor) – ByteTensor mask with shape [num_queries, num_keys]. Same in nn.MultiheadAttention.forward. Defaults to None.
key_padding_mask (Tensor) – ByteTensor with shape [bs, num_keys]. Defaults to None.
is_first (bool) – A indicator to tell whether the current layer is the first layer of the decoder. Defaults to False.
- Returns
forwarded results with shape [bs, num_queries, dim].
- Return type
Tensor
- class mmdet.models.layers.DABDetrTransformerEncoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], num_cp: int = -1, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Encoder of DAB-DETR.
- forward(query: Tensor, query_pos: Tensor, key_padding_mask: Tensor, **kwargs)[source]¶
Forward function of encoder.
- Parameters
query (Tensor) – Input queries of encoder, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional embeddings of the queries, has shape (bs, num_feat_points, dim).
key_padding_mask (Tensor) – ByteTensor, the key padding mask of the queries, has shape (bs, num_feat_points).
- Returns
With shape (num_queries, bs, dim).
- Return type
Tensor
- class mmdet.models.layers.DDQTransformerDecoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], post_norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, return_intermediate: bool = True, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Transformer decoder of DDQ.
- forward(query: Tensor, value: Tensor, key_padding_mask: Tensor, self_attn_mask: Tensor, reference_points: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, reg_branches: ModuleList, **kwargs) Tensor [source]¶
Forward function of Transformer decoder.
- Parameters
query (Tensor) – The input query, has shape (bs, num_queries, dims).
value (Tensor) – The input values, has shape (bs, num_value, dim).
key_padding_mask (Tensor) – The key_padding_mask of cross_attn input. ByteTensor, has shape (bs, num_value).
self_attn_mask (Tensor) – The attention mask to prevent information leakage from different denoising groups, distinct queries and dense queries, has shape (num_queries_total, num_queries_total). It will be updated for distinct queries selection in this forward function. It is None when self.training is False.
reference_points (Tensor) – The initial reference, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor) – The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, …].
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
reg_branches – (obj:nn.ModuleList): Used for refining the regression results.
- Returns
- Output queries and references of Transformer
decoder
query (Tensor): Output embeddings of the last decoder, has shape (bs, num_queries, embed_dims) when return_intermediate is False. Otherwise, Intermediate output embeddings of all decoder layers, has shape (num_decoder_layers, bs, num_queries, embed_dims).
reference_points (Tensor): The reference of the last decoder layer, has shape (bs, num_queries, 4) when return_intermediate is False. Otherwise, Intermediate references of all decoder layers, has shape (1 + num_decoder_layers, bs, num_queries, 4). The coordinates are arranged as (cx, cy, w, h).
- Return type
tuple[Tensor]
- select_distinct_queries(reference_points: Tensor, query: Tensor, self_attn_mask: Tensor, layer_index)[source]¶
Get updated self_attn_mask for distinct queries selection, it is used in self attention layers of decoder.
- Parameters
reference_points (Tensor) – The input reference of decoder, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
query (Tensor) – The input query of decoder, has shape (bs, num_queries, dims).
self_attn_mask (Tensor) – The input self attention mask of last decoder layer, has shape (bs, num_queries_total, num_queries_total).
layer_index (int) – Last decoder layer index, used to get classification score of last layer output, for distinct queries selection.
- Returns
- self_attn_mask used in self attention layers
of decoder, has shape (bs, num_queries_total, num_queries_total).
- Return type
Tensor
- class mmdet.models.layers.DeformableDetrTransformerDecoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], post_norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, return_intermediate: bool = True, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Transformer Decoder of Deformable DETR.
- forward(query: Tensor, query_pos: Tensor, value: Tensor, key_padding_mask: Tensor, reference_points: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, reg_branches: Optional[Module] = None, **kwargs) Tuple[Tensor] [source]¶
Forward function of Transformer decoder.
- Parameters
query (Tensor) – The input queries, has shape (bs, num_queries, dim).
query_pos (Tensor) – The input positional query, has shape (bs, num_queries, dim). It will be added to query before forward function.
value (Tensor) – The input values, has shape (bs, num_value, dim).
key_padding_mask (Tensor) – The key_padding_mask of cross_attn input. ByteTensor, has shape (bs, num_value).
reference_points (Tensor) – The initial reference, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h) when as_two_stage is True, otherwise has shape (bs, num_queries, 2) with the last dimension arranged as (cx, cy).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor) – The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, …].
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
reg_branches – (obj:nn.ModuleList, optional): Used for refining the regression results. Only would be passed when with_box_refine is True, otherwise would be None.
- Returns
Outputs of Deformable Transformer Decoder.
output (Tensor): Output embeddings of the last decoder, has shape (num_queries, bs, embed_dims) when return_intermediate is False. Otherwise, Intermediate output embeddings of all decoder layers, has shape (num_decoder_layers, num_queries, bs, embed_dims).
reference_points (Tensor): The reference of the last decoder layer, has shape (bs, num_queries, 4) when return_intermediate is False. Otherwise, Intermediate references of all decoder layers, has shape (num_decoder_layers, bs, num_queries, 4). The coordinates are arranged as (cx, cy, w, h)
- Return type
tuple[Tensor]
- class mmdet.models.layers.DeformableDetrTransformerDecoderLayer(self_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, cross_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, ffn_cfg: Optional[Union[ConfigDict, dict]] = {'act_cfg': {'inplace': True, 'type': 'ReLU'}, 'embed_dims': 256, 'feedforward_channels': 1024, 'ffn_drop': 0.0, 'num_fcs': 2}, norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Decoder layer of Deformable DETR.
- class mmdet.models.layers.DeformableDetrTransformerEncoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], num_cp: int = -1, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Transformer encoder of Deformable DETR.
- forward(query: Tensor, query_pos: Tensor, key_padding_mask: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, **kwargs) Tensor [source]¶
Forward function of Transformer encoder.
- Parameters
query (Tensor) – The input query, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional encoding for query, has shape (bs, num_queries, dim).
key_padding_mask (Tensor) – The key_padding_mask of self_attn input. ByteTensor, has shape (bs, num_queries).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor) – The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, …].
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
- Returns
Output queries of Transformer encoder, which is also called ‘encoder output embeddings’ or ‘memory’, has shape (bs, num_queries, dim)
- Return type
Tensor
- static get_encoder_reference_points(spatial_shapes: Tensor, valid_ratios: Tensor, device: Union[device, str]) Tensor [source]¶
Get the reference points used in encoder.
- Parameters
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
(obj (device) – device or str): The device acquired by the reference_points.
- Returns
Reference points used in decoder, has shape (bs, length, num_levels, 2).
- Return type
Tensor
- class mmdet.models.layers.DeformableDetrTransformerEncoderLayer(self_attn_cfg: Optional[Union[ConfigDict, dict]] = {'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, ffn_cfg: Optional[Union[ConfigDict, dict]] = {'act_cfg': {'inplace': True, 'type': 'ReLU'}, 'embed_dims': 256, 'feedforward_channels': 1024, 'ffn_drop': 0.0, 'num_fcs': 2}, norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Encoder layer of Deformable DETR.
- class mmdet.models.layers.DetrTransformerDecoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], post_norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, return_intermediate: bool = True, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Decoder of DETR.
- Parameters
num_layers (int) – Number of decoder layers.
layer_cfg (
ConfigDict
or dict) – the config of each encoder layer. All the layers will share the same config.post_norm_cfg (
ConfigDict
or dict, optional) – Config of the post normalization layer. Defaults to LN.return_intermediate (bool, optional) – Whether to return outputs of intermediate layers. Defaults to True,
init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- forward(query: Tensor, key: Tensor, value: Tensor, query_pos: Tensor, key_pos: Tensor, key_padding_mask: Tensor, **kwargs) Tensor [source]¶
Forward function of decoder :param query: The input query, has shape (bs, num_queries, dim). :type query: Tensor :param key: The input key, has shape (bs, num_keys, dim). :type key: Tensor :param value: The input value with the same shape as key. :type value: Tensor :param query_pos: The positional encoding for query, with the
same shape as query.
- Parameters
key_pos (Tensor) – The positional encoding for key, with the same shape as key.
key_padding_mask (Tensor) – The key_padding_mask of cross_attn input. ByteTensor, has shape (bs, num_value).
- Returns
The forwarded results will have shape (num_decoder_layers, bs, num_queries, dim) if return_intermediate is True else (1, bs, num_queries, dim).
- Return type
Tensor
- class mmdet.models.layers.DetrTransformerDecoderLayer(self_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, cross_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, ffn_cfg: Optional[Union[ConfigDict, dict]] = {'act_cfg': {'inplace': True, 'type': 'ReLU'}, 'embed_dims': 256, 'feedforward_channels': 1024, 'ffn_drop': 0.0, 'num_fcs': 2}, norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Implements decoder layer in DETR transformer.
- Parameters
self_attn_cfg (
ConfigDict
or dict, optional) – Config for self attention.cross_attn_cfg (
ConfigDict
or dict, optional) – Config for cross attention.ffn_cfg (
ConfigDict
or dict, optional) – Config for FFN.norm_cfg (
ConfigDict
or dict, optional) – Config for normalization layers. All the layers will share the same config. Defaults to LN.init_cfg (
ConfigDict
or dict, optional) – Config to control the initialization. Defaults to None.
- forward(query: Tensor, key: Optional[Tensor] = None, value: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, key_pos: Optional[Tensor] = None, self_attn_mask: Optional[Tensor] = None, cross_attn_mask: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None, **kwargs) Tensor [source]¶
- Parameters
query (Tensor) – The input query, has shape (bs, num_queries, dim).
key (Tensor, optional) – The input key, has shape (bs, num_keys, dim). If None, the query will be used. Defaults to None.
value (Tensor, optional) – The input value, has the same shape as key, as in nn.MultiheadAttention.forward. If None, the key will be used. Defaults to None.
query_pos (Tensor, optional) – The positional encoding for query, has the same shape as query. If not None, it will be added to query before forward function. Defaults to None.
key_pos (Tensor, optional) – The positional encoding for key, has the same shape as key. If not None, it will be added to key before forward function. If None, and query_pos has the same shape as key, then query_pos will be used for key_pos. Defaults to None.
self_attn_mask (Tensor, optional) – ByteTensor mask, has shape (num_queries, num_keys), as in nn.MultiheadAttention.forward. Defaults to None.
cross_attn_mask (Tensor, optional) – ByteTensor mask, has shape (num_queries, num_keys), as in nn.MultiheadAttention.forward. Defaults to None.
key_padding_mask (Tensor, optional) – The key_padding_mask of self_attn input. ByteTensor, has shape (bs, num_value). Defaults to None.
- Returns
forwarded results, has shape (bs, num_queries, dim).
- Return type
Tensor
- class mmdet.models.layers.DetrTransformerEncoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], num_cp: int = -1, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Encoder of DETR.
- Parameters
num_layers (int) – Number of encoder layers.
layer_cfg (
ConfigDict
or dict) – the config of each encoder layer. All the layers will share the same config.num_cp (int) – Number of checkpointing blocks in encoder layer. Default to -1.
init_cfg (
ConfigDict
or dict, optional) – the config to control the initialization. Defaults to None.
- forward(query: Tensor, query_pos: Tensor, key_padding_mask: Tensor, **kwargs) Tensor [source]¶
Forward function of encoder.
- Parameters
query (Tensor) – Input queries of encoder, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional embeddings of the queries, has shape (bs, num_queries, dim).
key_padding_mask (Tensor) – The key_padding_mask of self_attn input. ByteTensor, has shape (bs, num_queries).
- Returns
Has shape (bs, num_queries, dim) if batch_first is True, otherwise (num_queries, bs, dim).
- Return type
Tensor
- class mmdet.models.layers.DetrTransformerEncoderLayer(self_attn_cfg: Optional[Union[ConfigDict, dict]] = {'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, ffn_cfg: Optional[Union[ConfigDict, dict]] = {'act_cfg': {'inplace': True, 'type': 'ReLU'}, 'embed_dims': 256, 'feedforward_channels': 1024, 'ffn_drop': 0.0, 'num_fcs': 2}, norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Implements encoder layer in DETR transformer.
- Parameters
self_attn_cfg (
ConfigDict
or dict, optional) – Config for self attention.ffn_cfg (
ConfigDict
or dict, optional) – Config for FFN.norm_cfg (
ConfigDict
or dict, optional) – Config for normalization layers. All the layers will share the same config. Defaults to LN.init_cfg (
ConfigDict
or dict, optional) – Config to control the initialization. Defaults to None.
- forward(query: Tensor, query_pos: Tensor, key_padding_mask: Tensor, **kwargs) Tensor [source]¶
Forward function of an encoder layer.
- Parameters
query (Tensor) – The input query, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional encoding for query, with the same shape as query.
key_padding_mask (Tensor) – The key_padding_mask of self_attn input. ByteTensor. has shape (bs, num_queries).
- Returns
forwarded results, has shape (bs, num_queries, dim).
- Return type
Tensor
- class mmdet.models.layers.DinoTransformerDecoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], post_norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, return_intermediate: bool = True, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Transformer decoder of DINO.
- forward(query: Tensor, value: Tensor, key_padding_mask: Tensor, self_attn_mask: Tensor, reference_points: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, reg_branches: ModuleList, **kwargs) Tuple[Tensor] [source]¶
Forward function of Transformer decoder.
- Parameters
query (Tensor) – The input query, has shape (num_queries, bs, dim).
value (Tensor) – The input values, has shape (num_value, bs, dim).
key_padding_mask (Tensor) – The key_padding_mask of self_attn input. ByteTensor, has shape (num_queries, bs).
self_attn_mask (Tensor) – The attention mask to prevent information leakage from different denoising groups and matching parts, has shape (num_queries_total, num_queries_total). It is None when self.training is False.
reference_points (Tensor) – The initial reference, has shape (bs, num_queries, 4) with the last dimension arranged as (cx, cy, w, h).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor) – The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, …].
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
reg_branches – (obj:nn.ModuleList): Used for refining the regression results.
- Returns
- Output queries and references of Transformer
decoder
query (Tensor): Output embeddings of the last decoder, has shape (num_queries, bs, embed_dims) when return_intermediate is False. Otherwise, Intermediate output embeddings of all decoder layers, has shape (num_decoder_layers, num_queries, bs, embed_dims).
reference_points (Tensor): The reference of the last decoder layer, has shape (bs, num_queries, 4) when return_intermediate is False. Otherwise, Intermediate references of all decoder layers, has shape (num_decoder_layers, bs, num_queries, 4). The coordinates are arranged as (cx, cy, w, h)
- Return type
tuple[Tensor]
- class mmdet.models.layers.DropBlock(drop_prob, block_size, warmup_iters=2000, **kwargs)[source]¶
Randomly drop some regions of feature maps.
Please refer to the method proposed in DropBlock for details.
- Parameters
drop_prob (float) – The probability of dropping each block.
block_size (int) – The size of dropped blocks.
warmup_iters (int) – The drop probability will linearly increase from 0 to drop_prob during the first warmup_iters iterations. Default: 2000.
- class mmdet.models.layers.DyReLU(channels: int, ratio: int = 4, conv_cfg: Optional[Union[ConfigDict, dict]] = None, act_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = ({'type': 'ReLU'}, {'type': 'HSigmoid', 'bias': 3.0, 'divisor': 6.0}), init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Dynamic ReLU (DyReLU) module.
See Dynamic ReLU for details. Current implementation is specialized for task-aware attention in DyHead. HSigmoid arguments in default act_cfg follow DyHead official code. https://github.com/microsoft/DynamicHead/blob/master/dyhead/dyrelu.py
- Parameters
channels (int) – The input (and output) channels of DyReLU module.
ratio (int) – Squeeze ratio in Squeeze-and-Excitation-like module, the intermediate channel will be
int(channels/ratio)
. Defaults to 4.conv_cfg (None or dict) – Config dict for convolution layer. Defaults to None, which means using conv2d.
act_cfg (dict or Sequence[dict]) – Config dict for activation layer. If act_cfg is a dict, two activation layers will be configured by this dict. If act_cfg is a sequence of dicts, the first activation layer will be configured by the first dict and the second activation layer will be configured by the second dict. Defaults to (dict(type=’ReLU’), dict(type=’HSigmoid’, bias=3.0, divisor=6.0))
init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to None
- class mmdet.models.layers.DynamicConv(in_channels: int = 256, feat_channels: int = 64, out_channels: Optional[int] = None, input_feat_shape: int = 7, with_proj: bool = True, act_cfg: Optional[Union[ConfigDict, dict]] = {'inplace': True, 'type': 'ReLU'}, norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Implements Dynamic Convolution.
This module generate parameters for each sample and use bmm to implement 1*1 convolution. Code is modified from the official github repo .
- Parameters
in_channels (int) – The input feature channel. Defaults to 256.
feat_channels (int) – The inner feature channel. Defaults to 64.
out_channels (int, optional) – The output feature channel. When not specified, it will be set to in_channels by default
input_feat_shape (int) – The shape of input feature. Defaults to 7.
with_proj (bool) – Project two-dimentional feature to one-dimentional feature. Default to True.
act_cfg (dict) – The activation config for DynamicConv.
norm_cfg (dict) – Config dict for normalization layer. Default layer normalization.
(obj (init_cfg) – mmengine.ConfigDict): The Config for initialization. Default: None.
- forward(param_feature: Tensor, input_feature: Tensor) Tensor [source]¶
Forward function for DynamicConv.
- Parameters
param_feature (Tensor) – The feature can be used to generate the parameter, has shape (num_all_proposals, in_channels).
input_feature (Tensor) – Feature that interact with parameters, has shape (num_all_proposals, in_channels, H, W).
- Returns
The output feature has shape (num_all_proposals, out_channels).
- Return type
Tensor
- class mmdet.models.layers.ExpMomentumEMA(model: Module, momentum: float = 0.0002, gamma: int = 2000, interval=1, device: Optional[device] = None, update_buffers: bool = False)[source]¶
Exponential moving average (EMA) with exponential momentum strategy, which is used in YOLOX.
- Parameters
model (nn.Module) – The model to be averaged.
momentum (float) –
- The momentum used for updating ema parameter.
Ema’s parameter are updated with the formula:
averaged_param = (1-momentum) * averaged_param + momentum * source_param. Defaults to 0.0002.
gamma (int) – Use a larger momentum early in training and gradually annealing to a smaller value to update the ema model smoothly. The momentum is calculated as (1 - momentum) * exp(-(1 + steps) / gamma) + momentum. Defaults to 2000.
interval (int) – Interval between two updates. Defaults to 1.
device (torch.device, optional) – If provided, the averaged model will be stored on the
device
. Defaults to None.update_buffers (bool) – if True, it will compute running averages for both the parameters and the buffers of the model. Defaults to False.
- avg_func(averaged_param: Tensor, source_param: Tensor, steps: int) None [source]¶
Compute the moving average of the parameters using the exponential momentum strategy.
- Parameters
averaged_param (Tensor) – The averaged parameters.
source_param (Tensor) – The source parameters.
steps (int) – The number of times the parameters have been updated.
- class mmdet.models.layers.FrozenBatchNorm2d(num_features, eps=1e-05, **kwargs)[source]¶
BatchNorm2d where the batch statistics and the affine parameters are fixed.
It contains non-trainable buffers called “weight” and “bias”, “running_mean”, “running_var”, initialized to perform identity transformation. :param num_features: \(C\) from an expected input of size
\((N, C, H, W)\).
- Parameters
eps (float) – a value added to the denominator for numerical stability. Default: 1e-5
- classmethod convert_frozen_batchnorm(module)[source]¶
Convert all BatchNorm/SyncBatchNorm in module into FrozenBatchNorm.
- Parameters
module (torch.nn.Module) –
- Returns
If module is BatchNorm/SyncBatchNorm, returns a new module. Otherwise, in-place convert module and return it.
Similar to convert_sync_batchnorm in https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/batchnorm.py
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.layers.InvertedResidual(in_channels, out_channels, mid_channels, kernel_size=3, stride=1, se_cfg=None, with_expand_conv=True, conv_cfg=None, norm_cfg={'type': 'BN'}, act_cfg={'type': 'ReLU'}, drop_path_rate=0.0, with_cp=False, init_cfg=None)[source]¶
Inverted Residual Block.
- Parameters
in_channels (int) – The input channels of this Module.
out_channels (int) – The output channels of this Module.
mid_channels (int) – The input channels of the depthwise convolution.
kernel_size (int) – The kernel size of the depthwise convolution. Default: 3.
stride (int) – The stride of the depthwise convolution. Default: 1.
se_cfg (dict) – Config dict for se layer. Default: None, which means no se layer.
with_expand_conv (bool) – Use expand conv or not. If set False, mid_channels must be the same with in_channels. Default: True.
conv_cfg (dict) – Config dict for convolution layer. Default: None, which means using conv2d.
norm_cfg (dict) – Config dict for normalization layer. Default: dict(type=’BN’).
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’ReLU’).
drop_path_rate (float) – stochastic depth rate. Defaults to 0.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False.
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
- Returns
The output tensor.
- Return type
Tensor
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.layers.LearnedPositionalEncoding(num_feats: int, row_num_embed: int = 50, col_num_embed: int = 50, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Embedding', 'type': 'Uniform'})[source]¶
Position embedding with learnable embedding weights.
- Parameters
num_feats (int) – The feature dimension for each position along x-axis or y-axis. The final returned dimension for each position is 2 times of this value.
row_num_embed (int, optional) – The dictionary size of row embeddings. Defaults to 50.
col_num_embed (int, optional) – The dictionary size of col embeddings. Defaults to 50.
init_cfg (dict or list[dict], optional) – Initialization config dict.
- forward(mask: Tensor) Tensor [source]¶
Forward function for LearnedPositionalEncoding.
- Parameters
mask (Tensor) – ByteTensor mask. Non-zero values representing ignored positions, while zero values means valid positions for this image. Shape [bs, h, w].
- Returns
- Returned position embedding with shape
[bs, num_feats*2, h, w].
- Return type
pos (Tensor)
- class mmdet.models.layers.MLP(input_dim: int, hidden_dim: int, output_dim: int, num_layers: int)[source]¶
Very simple multi-layer perceptron (also called FFN) with relu. Mostly used in DETR series detectors.
- Parameters
input_dim (int) – Feature dim of the input tensor.
hidden_dim (int) – Feature dim of the hidden layer.
output_dim (int) – Feature dim of the output tensor.
num_layers (int) – Number of FFN layers. As the last layer of MLP only contains FFN (Linear).
- class mmdet.models.layers.MSDeformAttnPixelDecoder(in_channels: Union[List[int], Tuple[int]] = [256, 512, 1024, 2048], strides: Union[List[int], Tuple[int]] = [4, 8, 16, 32], feat_channels: int = 256, out_channels: int = 256, num_outs: int = 3, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 32, 'type': 'GN'}, act_cfg: Union[ConfigDict, dict] = {'type': 'ReLU'}, encoder: Optional[Union[ConfigDict, dict]] = None, positional_encoding: Union[ConfigDict, dict] = {'normalize': True, 'num_feats': 128}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Pixel decoder with multi-scale deformable attention.
- Parameters
in_channels (list[int] | tuple[int]) – Number of channels in the input feature maps.
strides (list[int] | tuple[int]) – Output strides of feature from backbone.
feat_channels (int) – Number of channels for feature.
out_channels (int) – Number of channels for output.
num_outs (int) – Number of output scales.
norm_cfg (
ConfigDict
or dict) – Config for normalization. Defaults to dict(type=’GN’, num_groups=32).act_cfg (
ConfigDict
or dict) – Config for activation. Defaults to dict(type=’ReLU’).encoder (
ConfigDict
or dict) – Config for transformer encoder. Defaults to None.positional_encoding (
ConfigDict
or dict) – Config for transformer encoder position encoding. Defaults to dict(num_feats=128, normalize=True).init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict. Defaults to None.
- forward(feats: List[Tensor]) Tuple[Tensor, Tensor] [source]¶
- Parameters
feats (list[Tensor]) – Feature maps of each level. Each has shape of (batch_size, c, h, w).
- Returns
A tuple containing the following:
mask_feature (Tensor): shape (batch_size, c, h, w).
multi_scale_features (list[Tensor]): Multi scale features, each in shape (batch_size, c, h, w).
- Return type
tuple
- class mmdet.models.layers.Mask2FormerTransformerDecoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], post_norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, return_intermediate: bool = True, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Decoder of Mask2Former.
- class mmdet.models.layers.Mask2FormerTransformerDecoderLayer(self_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, cross_attn_cfg: Optional[Union[ConfigDict, dict]] = {'batch_first': True, 'dropout': 0.0, 'embed_dims': 256, 'num_heads': 8}, ffn_cfg: Optional[Union[ConfigDict, dict]] = {'act_cfg': {'inplace': True, 'type': 'ReLU'}, 'embed_dims': 256, 'feedforward_channels': 1024, 'ffn_drop': 0.0, 'num_fcs': 2}, norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Implements decoder layer in Mask2Former transformer.
- forward(query: Tensor, key: Optional[Tensor] = None, value: Optional[Tensor] = None, query_pos: Optional[Tensor] = None, key_pos: Optional[Tensor] = None, self_attn_mask: Optional[Tensor] = None, cross_attn_mask: Optional[Tensor] = None, key_padding_mask: Optional[Tensor] = None, **kwargs) Tensor [source]¶
- Parameters
query (Tensor) – The input query, has shape (bs, num_queries, dim).
key (Tensor, optional) – The input key, has shape (bs, num_keys, dim). If None, the query will be used. Defaults to None.
value (Tensor, optional) – The input value, has the same shape as key, as in nn.MultiheadAttention.forward. If None, the key will be used. Defaults to None.
query_pos (Tensor, optional) – The positional encoding for query, has the same shape as query. If not None, it will be added to query before forward function. Defaults to None.
key_pos (Tensor, optional) – The positional encoding for key, has the same shape as key. If not None, it will be added to key before forward function. If None, and query_pos has the same shape as key, then query_pos will be used for key_pos. Defaults to None.
self_attn_mask (Tensor, optional) – ByteTensor mask, has shape (num_queries, num_keys), as in nn.MultiheadAttention.forward. Defaults to None.
cross_attn_mask (Tensor, optional) – ByteTensor mask, has shape (num_queries, num_keys), as in nn.MultiheadAttention.forward. Defaults to None.
key_padding_mask (Tensor, optional) – The key_padding_mask of self_attn input. ByteTensor, has shape (bs, num_value). Defaults to None.
- Returns
forwarded results, has shape (bs, num_queries, dim).
- Return type
Tensor
- class mmdet.models.layers.Mask2FormerTransformerEncoder(num_layers: int, layer_cfg: Union[ConfigDict, dict], num_cp: int = -1, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Encoder in PixelDecoder of Mask2Former.
- forward(query: Tensor, query_pos: Tensor, key_padding_mask: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, reference_points: Tensor, **kwargs) Tensor [source]¶
Forward function of Transformer encoder.
- Parameters
query (Tensor) – The input query, has shape (bs, num_queries, dim).
query_pos (Tensor) – The positional encoding for query, has shape (bs, num_queries, dim). If not None, it will be added to the query before forward function. Defaults to None.
key_padding_mask (Tensor) – The key_padding_mask of self_attn input. ByteTensor, has shape (bs, num_queries).
spatial_shapes (Tensor) – Spatial shapes of features in all levels, has shape (num_levels, 2), last dimension represents (h, w).
level_start_index (Tensor) – The start index of each level. A tensor has shape (num_levels, ) and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, …].
valid_ratios (Tensor) – The ratios of the valid width and the valid height relative to the width and the height of features in all levels, has shape (bs, num_levels, 2).
reference_points (Tensor) – The initial reference, has shape (bs, num_queries, 2) with the last dimension arranged as (cx, cy).
- Returns
Output queries of Transformer encoder, which is also called ‘encoder output embeddings’ or ‘memory’, has shape (bs, num_queries, dim)
- Return type
Tensor
- class mmdet.models.layers.NormedConv2d(*args, temperature: float = 20, power: int = 1.0, eps: float = 1e-06, norm_over_kernel: bool = False, **kwargs)[source]¶
Normalized Conv2d Layer.
- Parameters
tempeature (float, optional) – Tempeature term. Defaults to 20.
power (int, optional) – Power term. Defaults to 1.0.
eps (float, optional) – The minimal value of divisor to keep numerical stability. Defaults to 1e-6.
norm_over_kernel (bool, optional) – Normalize over kernel. Defaults to False.
- class mmdet.models.layers.NormedLinear(*args, temperature: float = 20, power: int = 1.0, eps: float = 1e-06, **kwargs)[source]¶
Normalized Linear Layer.
- Parameters
tempeature (float, optional) – Tempeature term. Defaults to 20.
power (int, optional) – Power term. Defaults to 1.0.
eps (float, optional) – The minimal value of divisor to keep numerical stability. Defaults to 1e-6.
- class mmdet.models.layers.PatchEmbed(in_channels: int = 3, embed_dims: int = 768, conv_type: str = 'Conv2d', kernel_size: int = 16, stride: int = 16, padding: Union[int, tuple, str] = 'corner', dilation: int = 1, bias: bool = True, norm_cfg: Optional[Union[ConfigDict, dict]] = None, input_size: Optional[Union[int, tuple]] = None, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Image to Patch Embedding.
We use a conv layer to implement PatchEmbed.
- Parameters
in_channels (int) – The num of input channels. Default: 3
embed_dims (int) – The dimensions of embedding. Default: 768
conv_type (str) – The config dict for embedding conv layer type selection. Default: “Conv2d.
kernel_size (int) – The kernel_size of embedding conv. Default: 16.
stride (int) – The slide stride of embedding conv. Default: None (Would be set as kernel_size).
padding (int | tuple | string) – The padding length of embedding conv. When it is a string, it means the mode of adaptive padding, support “same” and “corner” now. Default: “corner”.
dilation (int) – The dilation rate of embedding conv. Default: 1.
bias (bool) – Bias of embed conv. Default: True.
norm_cfg (dict, optional) – Config dict for normalization layer. Default: None.
input_size (int | tuple | None) – The size of input, which will be used to calculate the out size. Only work when dynamic_size is False. Default: None.
init_cfg (mmengine.ConfigDict, optional) – The Config for initialization. Default: None.
- forward(x: Tensor) Tuple[Tensor, Tuple[int]] [source]¶
- Parameters
x (Tensor) – Has shape (B, C, H, W). In most case, C is 3.
- Returns
Contains merged results and its spatial shape.
x (Tensor): Has shape (B, out_h * out_w, embed_dims)
- out_size (tuple[int]): Spatial shape of x, arrange as
(out_h, out_w).
- Return type
tuple
- class mmdet.models.layers.PatchMerging(in_channels: int, out_channels: int, kernel_size: Optional[Union[int, tuple]] = 2, stride: Optional[Union[int, tuple]] = None, padding: Union[int, tuple, str] = 'corner', dilation: Optional[Union[int, tuple]] = 1, bias: Optional[bool] = False, norm_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'LN'}, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
Merge patch feature map.
This layer groups feature map by kernel_size, and applies norm and linear layers to the grouped feature map. Our implementation uses nn.Unfold to merge patch, which is about 25% faster than original implementation. Instead, we need to modify pretrained models for compatibility.
- Parameters
in_channels (int) – The num of input channels. to gets fully covered by filter and stride you specified.. Default: True.
out_channels (int) – The num of output channels.
kernel_size (int | tuple, optional) – the kernel size in the unfold layer. Defaults to 2.
stride (int | tuple, optional) – the stride of the sliding blocks in the unfold layer. Default: None. (Would be set as kernel_size)
padding (int | tuple | string) – The padding length of embedding conv. When it is a string, it means the mode of adaptive padding, support “same” and “corner” now. Default: “corner”.
dilation (int | tuple, optional) – dilation parameter in the unfold layer. Default: 1.
bias (bool, optional) – Whether to add bias in linear layer or not. Defaults: False.
norm_cfg (dict, optional) – Config dict for normalization layer. Default: dict(type=’LN’).
init_cfg (dict, optional) – The extra config for initialization. Default: None.
- forward(x: Tensor, input_size: Tuple[int]) Tuple[Tensor, Tuple[int]] [source]¶
- Parameters
x (Tensor) – Has shape (B, H*W, C_in).
input_size (tuple[int]) – The spatial shape of x, arrange as (H, W). Default: None.
- Returns
Contains merged results and its spatial shape.
x (Tensor): Has shape (B, Merged_H * Merged_W, C_out)
- out_size (tuple[int]): Spatial shape of x, arrange as
(Merged_H, Merged_W).
- Return type
tuple
- class mmdet.models.layers.PixelDecoder(in_channels: Union[List[int], Tuple[int]], feat_channels: int, out_channels: int, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 32, 'type': 'GN'}, act_cfg: Union[ConfigDict, dict] = {'type': 'ReLU'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Pixel decoder with a structure like fpn.
- Parameters
in_channels (list[int] | tuple[int]) – Number of channels in the input feature maps.
feat_channels (int) – Number channels for feature.
out_channels (int) – Number channels for output.
norm_cfg (
ConfigDict
or dict) – Config for normalization. Defaults to dict(type=’GN’, num_groups=32).act_cfg (
ConfigDict
or dict) – Config for activation. Defaults to dict(type=’ReLU’).encoder (
ConfigDict
or dict) – Config for transorformer encoder.Defaults to None.positional_encoding (
ConfigDict
or dict) – Config for transformer encoder position encoding. Defaults to dict(type=’SinePositionalEncoding’, num_feats=128, normalize=True).init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict. Defaults to None.
- forward(feats: List[Tensor], batch_img_metas: List[dict]) Tuple[Tensor, Tensor] [source]¶
- Parameters
feats (list[Tensor]) – Feature maps of each level. Each has shape of (batch_size, c, h, w).
batch_img_metas (list[dict]) – List of image information. Pass in for creating more accurate padding mask. Not used here.
- Returns
a tuple containing the following:
mask_feature (Tensor): Shape (batch_size, c, h, w).
memory (Tensor): Output of last stage of backbone. Shape (batch_size, c, h, w).
- Return type
tuple[Tensor, Tensor]
- class mmdet.models.layers.ResLayer(block: BaseModule, inplanes: int, planes: int, num_blocks: int, stride: int = 1, avg_down: bool = False, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'type': 'BN'}, downsample_first: bool = True, **kwargs)[source]¶
ResLayer to build ResNet style backbone.
- Parameters
block (nn.Module) – block used to build ResLayer.
inplanes (int) – inplanes of block.
planes (int) – planes of block.
num_blocks (int) – number of blocks.
stride (int) – stride of the first block. Defaults to 1
avg_down (bool) – Use AvgPool instead of stride conv when downsampling in the bottleneck. Defaults to False
conv_cfg (dict) – dictionary to construct and config conv layer. Defaults to None
norm_cfg (dict) – dictionary to construct and config norm layer. Defaults to dict(type=’BN’)
downsample_first (bool) – Downsample at the first block or last block. False for Hourglass, True for ResNet. Defaults to True
- class mmdet.models.layers.SELayer(channels: int, ratio: int = 16, conv_cfg: Optional[Union[ConfigDict, dict]] = None, act_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = ({'type': 'ReLU'}, {'type': 'Sigmoid'}), init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Squeeze-and-Excitation Module.
- Parameters
channels (int) – The input (and output) channels of the SE layer.
ratio (int) – Squeeze ratio in SELayer, the intermediate channel will be
int(channels/ratio)
. Defaults to 16.conv_cfg (None or dict) – Config dict for convolution layer. Defaults to None, which means using conv2d.
act_cfg (dict or Sequence[dict]) – Config dict for activation layer. If act_cfg is a dict, two activation layers will be configured by this dict. If act_cfg is a sequence of dicts, the first activation layer will be configured by the first dict and the second activation layer will be configured by the second dict. Defaults to (dict(type=’ReLU’), dict(type=’Sigmoid’))
init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to None
- class mmdet.models.layers.SiLU(inplace: bool = False)[source]¶
Applies the Sigmoid Linear Unit (SiLU) function, element-wise.
The SiLU function is also known as the swish function.
\[\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}\]Note
See Gaussian Error Linear Units (GELUs) where the SiLU (Sigmoid Linear Unit) was originally coined, and see Sigmoid-Weighted Linear Units for Neural Network Function Approximation in Reinforcement Learning and Swish: a Self-Gated Activation Function where the SiLU was experimented with later.
- Shape:
Input: \((*)\), where \(*\) means any number of dimensions.
Output: \((*)\), same shape as the input.
Examples:
>>> m = nn.SiLU() >>> input = torch.randn(2) >>> output = m(input)
- extra_repr() str [source]¶
Set the extra representation of the module.
To print customized extra information, you should re-implement this method in your own modules. Both single-line and multi-line strings are acceptable.
- forward(input: Tensor) Tensor [source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.layers.SimplifiedBasicBlock(inplanes: int, planes: int, stride: int = 1, dilation: int = 1, downsample: Optional[Sequential] = None, style: Union[ConfigDict, dict] = 'pytorch', with_cp: bool = False, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'type': 'BN'}, dcn: Optional[Union[ConfigDict, dict]] = None, plugins: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Simplified version of original basic residual block. This is used in SCNet.
Norm layer is now optional
Last ReLU in forward function is removed
- property norm1: Optional[BaseModule]¶
normalization layer after the first convolution layer.
- Type
nn.Module
- property norm2: Optional[BaseModule]¶
normalization layer after the second convolution layer.
- Type
nn.Module
- class mmdet.models.layers.SinePositionalEncoding(num_feats: int, temperature: int = 10000, normalize: bool = False, scale: float = 6.283185307179586, eps: float = 1e-06, offset: float = 0.0, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Position encoding with sine and cosine functions.
See End-to-End Object Detection with Transformers for details.
- Parameters
num_feats (int) – The feature dimension for each position along x-axis or y-axis. Note the final returned dimension for each position is 2 times of this value.
temperature (int, optional) – The temperature used for scaling the position embedding. Defaults to 10000.
normalize (bool, optional) – Whether to normalize the position embedding. Defaults to False.
scale (float, optional) – A scale factor that scales the position embedding. The scale will be used only when normalize is True. Defaults to 2*pi.
eps (float, optional) – A value added to the denominator for numerical stability. Defaults to 1e-6.
offset (float) – offset add to embed when do the normalization. Defaults to 0.
init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to None
- forward(mask: Tensor, input: Optional[Tensor] = None) Tensor [source]¶
Forward function for SinePositionalEncoding.
- Parameters
mask (Tensor) – ByteTensor mask. Non-zero values representing ignored positions, while zero values means valid positions for this image. Shape [bs, h, w].
input (Tensor, optional) – Input image/feature Tensor. Shape [bs, c, h, w]
- Returns
- Returned position embedding with shape
[bs, num_feats*2, h, w].
- Return type
pos (Tensor)
- class mmdet.models.layers.SinePositionalEncoding3D(num_feats: int, temperature: int = 10000, normalize: bool = False, scale: float = 6.283185307179586, eps: float = 1e-06, offset: float = 0.0, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Position encoding with sine and cosine functions.
See End-to-End Object Detection with Transformers for details.
- Parameters
num_feats (int) – The feature dimension for each position along x-axis or y-axis. Note the final returned dimension for each position is 2 times of this value.
temperature (int, optional) – The temperature used for scaling the position embedding. Defaults to 10000.
normalize (bool, optional) – Whether to normalize the position embedding. Defaults to False.
scale (float, optional) – A scale factor that scales the position embedding. The scale will be used only when normalize is True. Defaults to 2*pi.
eps (float, optional) – A value added to the denominator for numerical stability. Defaults to 1e-6.
offset (float) – offset add to embed when do the normalization. Defaults to 0.
init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to None.
- forward(mask: Tensor) Tensor [source]¶
Forward function for SinePositionalEncoding3D.
- Parameters
mask (Tensor) – ByteTensor mask. Non-zero values representing ignored positions, while zero values means valid positions for this image. Shape [bs, t, h, w].
- Returns
- Returned position embedding with shape
[bs, num_feats*2, h, w].
- Return type
pos (Tensor)
- class mmdet.models.layers.TransformerEncoderPixelDecoder(in_channels: Union[List[int], Tuple[int]], feat_channels: int, out_channels: int, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 32, 'type': 'GN'}, act_cfg: Union[ConfigDict, dict] = {'type': 'ReLU'}, encoder: Optional[Union[ConfigDict, dict]] = None, positional_encoding: Union[ConfigDict, dict] = {'normalize': True, 'num_feats': 128}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Pixel decoder with transformer encoder inside.
- Parameters
in_channels (list[int] | tuple[int]) – Number of channels in the input feature maps.
feat_channels (int) – Number channels for feature.
out_channels (int) – Number channels for output.
norm_cfg (
ConfigDict
or dict) – Config for normalization. Defaults to dict(type=’GN’, num_groups=32).act_cfg (
ConfigDict
or dict) – Config for activation. Defaults to dict(type=’ReLU’).encoder (
ConfigDict
or dict) – Config for transformer encoder. Defaults to None.positional_encoding (
ConfigDict
or dict) – Config for transformer encoder position encoding. Defaults to dict(num_feats=128, normalize=True).init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict. Defaults to None.
- forward(feats: List[Tensor], batch_img_metas: List[dict]) Tuple[Tensor, Tensor] [source]¶
- Parameters
feats (list[Tensor]) – Feature maps of each level. Each has shape of (batch_size, c, h, w).
batch_img_metas (list[dict]) – List of image information. Pass in for creating more accurate padding mask.
- Returns
a tuple containing the following:
mask_feature (Tensor): shape (batch_size, c, h, w).
memory (Tensor): shape (batch_size, c, h, w).
- Return type
tuple
- mmdet.models.layers.adaptive_avg_pool2d(input, output_size)[source]¶
Handle empty batch dimension to adaptive_avg_pool2d.
- Parameters
input (tensor) – 4D tensor.
output_size (int, tuple[int,int]) – the target output size.
- mmdet.models.layers.coordinate_to_encoding(coord_tensor: Tensor, num_feats: int = 128, temperature: int = 10000, scale: float = 6.283185307179586)[source]¶
Convert coordinate tensor to positional encoding.
- Parameters
coord_tensor (Tensor) – Coordinate tensor to be converted to positional encoding. With the last dimension as 2 or 4.
num_feats (int, optional) – The feature dimension for each position along x-axis or y-axis. Note the final returned dimension for each position is 2 times of this value. Defaults to 128.
temperature (int, optional) – The temperature used for scaling the position embedding. Defaults to 10000.
scale (float, optional) – A scale factor that scales the position embedding. The scale will be used only when normalize is True. Defaults to 2*pi.
- Returns
Returned encoded positional tensor.
- Return type
Tensor
- mmdet.models.layers.fast_nms(multi_bboxes: Tensor, multi_scores: Tensor, multi_coeffs: Tensor, score_thr: float, iou_thr: float, top_k: int, max_num: int = -1) Union[Tuple[Tensor, Tensor, Tensor], Tuple[Tensor, Tensor]] [source]¶
Fast NMS in YOLACT.
Fast NMS allows already-removed detections to suppress other detections so that every instance can be decided to be kept or discarded in parallel, which is not possible in traditional NMS. This relaxation allows us to implement Fast NMS entirely in standard GPU-accelerated matrix operations.
- Parameters
multi_bboxes (Tensor) – shape (n, #class*4) or (n, 4)
multi_scores (Tensor) – shape (n, #class+1), where the last column contains scores of the background class, but this will be ignored.
multi_coeffs (Tensor) – shape (n, #class*coeffs_dim).
score_thr (float) – bbox threshold, bboxes with scores lower than it will not be considered.
iou_thr (float) – IoU threshold to be considered as conflicted.
top_k (int) – if there are more than top_k bboxes before NMS, only top top_k will be kept.
max_num (int) – if there are more than max_num bboxes after NMS, only top max_num will be kept. If -1, keep all the bboxes. Default: -1.
- Returns
(dets, labels, coefficients), tensors of shape (k, 5), (k, 1), and (k, coeffs_dim). Dets are boxes with scores. Labels are 0-based.
- Return type
Union[Tuple[Tensor, Tensor, Tensor], Tuple[Tensor, Tensor]]
- mmdet.models.layers.inverse_sigmoid(x: Tensor, eps: float = 1e-05) Tensor [source]¶
Inverse function of sigmoid.
- Parameters
x (Tensor) – The tensor to do the inverse.
eps (float) – EPS avoid numerical overflow. Defaults 1e-5.
- Returns
The x has passed the inverse function of sigmoid, has the same shape with input.
- Return type
Tensor
- mmdet.models.layers.mask_matrix_nms(masks, labels, scores, filter_thr=-1, nms_pre=-1, max_num=-1, kernel='gaussian', sigma=2.0, mask_area=None)[source]¶
Matrix NMS for multi-class masks.
- Parameters
masks (Tensor) – Has shape (num_instances, h, w)
labels (Tensor) – Labels of corresponding masks, has shape (num_instances,).
scores (Tensor) – Mask scores of corresponding masks, has shape (num_instances).
filter_thr (float) – Score threshold to filter the masks after matrix nms. Default: -1, which means do not use filter_thr.
nms_pre (int) – The max number of instances to do the matrix nms. Default: -1, which means do not use nms_pre.
max_num (int, optional) – If there are more than max_num masks after matrix, only top max_num will be kept. Default: -1, which means do not use max_num.
kernel (str) – ‘linear’ or ‘gaussian’.
sigma (float) – std in gaussian method.
mask_area (Tensor) – The sum of seg_masks.
- Returns
Processed mask results.
scores (Tensor): Updated scores, has shape (n,).
labels (Tensor): Remained labels, has shape (n,).
masks (Tensor): Remained masks, has shape (n, w, h).
- keep_inds (Tensor): The indices number of
the remaining mask in the input mask, has shape (n,).
- Return type
tuple(Tensor)
- mmdet.models.layers.multiclass_nms(multi_bboxes: Tensor, multi_scores: Tensor, score_thr: float, nms_cfg: Union[ConfigDict, dict], max_num: int = -1, score_factors: Optional[Tensor] = None, return_inds: bool = False, box_dim: int = 4) Union[Tuple[Tensor, Tensor, Tensor], Tuple[Tensor, Tensor]] [source]¶
NMS for multi-class bboxes.
- Parameters
multi_bboxes (Tensor) – shape (n, #class*4) or (n, 4)
multi_scores (Tensor) – shape (n, #class), where the last column contains scores of the background class, but this will be ignored.
score_thr (float) – bbox threshold, bboxes with scores lower than it will not be considered.
nms_cfg (Union[
ConfigDict
, dict]) – a dict that contains the arguments of nms operations.max_num (int, optional) – if there are more than max_num bboxes after NMS, only top max_num will be kept. Default to -1.
score_factors (Tensor, optional) – The factors multiplied to scores before applying NMS. Default to None.
return_inds (bool, optional) – Whether return the indices of kept bboxes. Default to False.
box_dim (int) – The dimension of boxes. Defaults to 4.
- Returns
(dets, labels, indices (optional)), tensors of shape (k, 5), (k), and (k). Dets are boxes with scores. Labels are 0-based.
- Return type
Union[Tuple[Tensor, Tensor, Tensor], Tuple[Tensor, Tensor]]
- mmdet.models.layers.nchw_to_nlc(x)[source]¶
Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor.
- Parameters
x (Tensor) – The input tensor of shape [N, C, H, W] before conversion.
- Returns
The output tensor of shape [N, L, C] after conversion.
- Return type
Tensor
- mmdet.models.layers.nlc_to_nchw(x: Tensor, hw_shape: Sequence[int]) Tensor [source]¶
Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor.
- Parameters
x (Tensor) – The input tensor of shape [N, L, C] before conversion.
hw_shape (Sequence[int]) – The height and width of output feature map.
- Returns
The output tensor of shape [N, C, H, W] after conversion.
- Return type
Tensor
losses¶
- class mmdet.models.losses.AssociativeEmbeddingLoss(pull_weight=0.25, push_weight=0.25)[source]¶
Associative Embedding Loss.
More details can be found in Associative Embedding and CornerNet . Code is modified from kp_utils.py # noqa: E501
- Parameters
pull_weight (float) – Loss weight for corners from same object.
push_weight (float) – Loss weight for corners from different object.
- class mmdet.models.losses.BalancedL1Loss(alpha=0.5, gamma=1.5, beta=1.0, reduction='mean', loss_weight=1.0)[source]¶
Balanced L1 Loss.
arXiv: https://arxiv.org/pdf/1904.02701.pdf (CVPR 2019)
- Parameters
alpha (float) – The denominator
alpha
in the balanced L1 loss. Defaults to 0.5.gamma (float) – The
gamma
in the balanced L1 loss. Defaults to 1.5.beta (float, optional) – The loss is a piecewise function of prediction and target.
beta
serves as a threshold for the difference between the prediction and target. Defaults to 1.0.reduction (str, optional) – The method that reduces the loss to a scalar. Options are “none”, “mean” and “sum”.
loss_weight (float, optional) – The weight of the loss. Defaults to 1.0
- forward(pred, target, weight=None, avg_factor=None, reduction_override=None, **kwargs)[source]¶
Forward function of loss.
- Parameters
pred (torch.Tensor) – The prediction with shape (N, 4).
target (torch.Tensor) – The learning target of the prediction with shape (N, 4).
weight (torch.Tensor, optional) – Sample-wise loss weight with shape (N, ).
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”.
- Returns
The calculated loss
- Return type
torch.Tensor
- class mmdet.models.losses.BoundedIoULoss(beta: float = 0.2, eps: float = 0.001, reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
BIoULoss.
This is an implementation of paper Improving Object Localization with Fitness NMS and Bounded IoU Loss..
- Parameters
beta (float, optional) – Beta parameter in smoothl1.
eps (float, optional) – Epsilon to avoid NaN values.
reduction (str) – Options are “none”, “mean” and “sum”.
loss_weight (float) – Weight of loss.
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None, **kwargs) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – The learning target of the prediction, shape (n, 4).
weight (Optional[Tensor], optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (Optional[int], optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (Optional[str], optional) – The reduction method used to override the original reduction method of the loss. Defaults to None. Options are “none”, “mean” and “sum”.
- Returns
Loss tensor.
- Return type
Tensor
- class mmdet.models.losses.CIoULoss(eps: float = 1e-06, reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
-
Code is modified from https://github.com/Zzh-tju/CIoU.
- Parameters
eps (float) – Epsilon to avoid log(0).
reduction (str) – Options are “none”, “mean” and “sum”.
loss_weight (float) – Weight of loss.
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None, **kwargs) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – The learning target of the prediction, shape (n, 4).
weight (Optional[Tensor], optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (Optional[int], optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (Optional[str], optional) – The reduction method used to override the original reduction method of the loss. Defaults to None. Options are “none”, “mean” and “sum”.
- Returns
Loss tensor.
- Return type
Tensor
- class mmdet.models.losses.CrossEntropyCustomLoss(use_sigmoid=False, use_mask=False, reduction='mean', num_classes=-1, class_weight=None, ignore_index=None, loss_weight=1.0, avg_non_ignore=False)[source]¶
- class mmdet.models.losses.CrossEntropyLoss(use_sigmoid=False, use_mask=False, reduction='mean', class_weight=None, ignore_index=None, loss_weight=1.0, avg_non_ignore=False)[source]¶
-
- forward(cls_score, label, weight=None, avg_factor=None, reduction_override=None, ignore_index=None, **kwargs)[source]¶
Forward function.
- Parameters
cls_score (torch.Tensor) – The prediction.
label (torch.Tensor) – The learning label of the prediction.
weight (torch.Tensor, optional) – Sample-wise loss weight.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The method used to reduce the loss. Options are “none”, “mean” and “sum”.
ignore_index (int | None) – The label index to be ignored. If not None, it will override the default value. Default: None.
- Returns
The calculated loss.
- Return type
torch.Tensor
- class mmdet.models.losses.DDQAuxLoss(loss_cls={'activated': True, 'beta': 2.0, 'loss_weight': 1.0, 'type': 'QualityFocalLoss', 'use_sigmoid': True}, loss_bbox={'loss_weight': 2.0, 'type': 'GIoULoss'}, train_cfg={'alpha': 1, 'assigner': {'topk': 8, 'type': 'TopkHungarianAssigner'}, 'beta': 6})[source]¶
DDQ auxiliary branches loss for dense queries.
- Parameters
loss_cls (dict) – Configuration of classification loss function.
loss_bbox (dict) – Configuration of bbox regression loss function.
train_cfg (dict) – Configuration of gt targets assigner for each predicted bbox.
- get_targets(cls_scores, bbox_preds, gt_bboxes_list, img_metas, gt_labels_list=None, **kwargs)[source]¶
Compute regression and classification targets for a batch images.
- Parameters
cls_scores (Tensor) – Predicted normalized classification scores, has shape (bs, num_dense_queries, cls_out_channels).
bbox_preds (Tensor) – Predicted unnormalized bbox coordinates, has shape (bs, num_dense_queries, 4) with the last dimension arranged as (x1, y1, x2, y2).
gt_bboxes_list (List[Tensor]) – List of unnormalized ground truth bboxes for each image, each has shape (num_gt, 4) with the last dimension arranged as (x1, y1, x2, y2). NOTE: num_gt is dynamic for each image.
img_metas (list[dict]) – Meta information for one image, e.g., image size, scaling factor, etc.
gt_labels_list (list[Tensor]) – List of ground truth classification index for each image, each has shape (num_gt,). NOTE: num_gt is dynamic for each image. Default: None.
- Returns
a tuple containing the following targets.
all_labels (list[Tensor]): Labels for all images.
all_label_weights (list[Tensor]): Label weights for all images.
all_bbox_targets (list[Tensor]): Bbox targets for all images.
- all_assign_metrics (list[Tensor]): Normalized alignment metrics
for all images.
- Return type
tuple
- loss(cls_scores, bbox_preds, gt_bboxes, gt_labels, img_metas, **kwargs)[source]¶
Calculate auxiliary branches loss for dense queries.
- Parameters
cls_scores (Tensor) – Predicted normalized classification scores, has shape (bs, num_dense_queries, cls_out_channels).
bbox_preds (Tensor) – Predicted unnormalized bbox coordinates, has shape (bs, num_dense_queries, 4) with the last dimension arranged as (x1, y1, x2, y2).
gt_bboxes (list[Tensor]) – List of unnormalized ground truth bboxes for each image, each has shape (num_gt, 4) with the last dimension arranged as (x1, y1, x2, y2). NOTE: num_gt is dynamic for each image.
gt_labels (list[Tensor]) – List of ground truth classification index for each image, each has shape (num_gt,). NOTE: num_gt is dynamic for each image.
img_metas (list[dict]) – Meta information for one image, e.g., image size, scaling factor, etc.
- Returns
A dictionary of loss components.
- Return type
dict
- loss_single(cls_score, bbox_pred, labels, label_weights, bbox_targets, alignment_metrics)[source]¶
Calculate auxiliary branches loss for dense queries for one image.
- Parameters
cls_score (Tensor) – Predicted normalized classification scores for one image, has shape (num_dense_queries, cls_out_channels).
bbox_pred (Tensor) – Predicted unnormalized bbox coordinates for one image, has shape (num_dense_queries, 4) with the last dimension arranged as (x1, y1, x2, y2).
labels (Tensor) – Labels for one image.
label_weights (Tensor) – Label weights for one image.
bbox_targets (Tensor) – Bbox targets for one image.
alignment_metrics (Tensor) – Normalized alignment metrics for one image.
- Returns
A tuple of loss components and loss weights.
- Return type
tuple
- class mmdet.models.losses.DIoULoss(eps: float = 1e-06, reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
Implementation of `Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression https://arxiv.org/abs/1911.08287`_.
Code is modified from https://github.com/Zzh-tju/DIoU.
- Parameters
eps (float) – Epsilon to avoid log(0).
reduction (str) – Options are “none”, “mean” and “sum”.
loss_weight (float) – Weight of loss.
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None, **kwargs) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – The learning target of the prediction, shape (n, 4).
weight (Optional[Tensor], optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (Optional[int], optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (Optional[str], optional) – The reduction method used to override the original reduction method of the loss. Defaults to None. Options are “none”, “mean” and “sum”.
- Returns
Loss tensor.
- Return type
Tensor
- class mmdet.models.losses.DiceLoss(use_sigmoid=True, activate=True, reduction='mean', naive_dice=False, loss_weight=1.0, eps=0.001)[source]¶
- forward(pred, target, weight=None, reduction_override=None, avg_factor=None)[source]¶
Forward function.
- Parameters
pred (torch.Tensor) – The prediction, has a shape (n, *).
target (torch.Tensor) – The label of the prediction, shape (n, *), same shape of pred.
weight (torch.Tensor, optional) – The weight of loss for each prediction, has a shape (n,). Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”.
- Returns
The calculated loss
- Return type
torch.Tensor
- class mmdet.models.losses.DistributionFocalLoss(reduction='mean', loss_weight=1.0)[source]¶
Distribution Focal Loss (DFL) is a variant of Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection.
- Parameters
reduction (str) – Options are ‘none’, ‘mean’ and ‘sum’.
loss_weight (float) – Loss weight of current loss.
- forward(pred, target, weight=None, avg_factor=None, reduction_override=None)[source]¶
Forward function.
- Parameters
pred (torch.Tensor) – Predicted general distribution of bounding boxes (before softmax) with shape (N, n+1), n is the max value of the integral set {0, …, n} in paper.
target (torch.Tensor) – Target distance label for bounding boxes with shape (N,).
weight (torch.Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- class mmdet.models.losses.EIoULoss(eps: float = 1e-06, reduction: str = 'mean', loss_weight: float = 1.0, smooth_point: float = 0.1)[source]¶
Implementation of paper Extended-IoU Loss: A Systematic IoU-Related Method: Beyond Simplified Regression for Better Localization
Code is modified from https://github.com//ShiqiYu/libfacedetection.train.
- Parameters
eps (float) – Epsilon to avoid log(0).
reduction (str) – Options are “none”, “mean” and “sum”.
loss_weight (float) – Weight of loss.
smooth_point (float) – hyperparameter, default is 0.1.
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None, **kwargs) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – The learning target of the prediction, shape (n, 4).
weight (Optional[Tensor], optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (Optional[int], optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (Optional[str], optional) – The reduction method used to override the original reduction method of the loss. Defaults to None. Options are “none”, “mean” and “sum”.
- Returns
Loss tensor.
- Return type
Tensor
- class mmdet.models.losses.EQLV2Loss(use_sigmoid: bool = True, reduction: str = 'mean', class_weight: Optional[Tensor] = None, loss_weight: float = 1.0, num_classes: int = 1203, use_distributed: bool = False, mu: float = 0.8, alpha: float = 4.0, gamma: int = 12, vis_grad: bool = False, test_with_obj: bool = True)[source]¶
- forward(cls_score: Tensor, label: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[Tensor] = None) Tensor [source]¶
-
- Parameters
cls_score (Tensor) – The prediction with shape (N, C), C is the number of classes.
label (Tensor) – The ground truth label of the predicted target with shape (N, C), C is the number of classes.
weight (Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”.
- Returns
The calculated loss
- Return type
Tensor
- class mmdet.models.losses.FocalCustomLoss(use_sigmoid=True, num_classes=-1, gamma=2.0, alpha=0.25, reduction='mean', loss_weight=1.0, activated=False)[source]¶
- forward(pred, target, weight=None, avg_factor=None, reduction_override=None)[source]¶
Forward function.
- Parameters
pred (torch.Tensor) – The prediction.
target (torch.Tensor) – The learning label of the prediction.
weight (torch.Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”.
- Returns
The calculated loss
- Return type
torch.Tensor
- class mmdet.models.losses.FocalLoss(use_sigmoid=True, gamma=2.0, alpha=0.25, reduction='mean', loss_weight=1.0, activated=False)[source]¶
- forward(pred, target, weight=None, avg_factor=None, reduction_override=None)[source]¶
Forward function.
- Parameters
pred (torch.Tensor) – The prediction.
target (torch.Tensor) – The learning label of the prediction. The target shape support (N,C) or (N,), (N,C) means one-hot form.
weight (torch.Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”.
- Returns
The calculated loss
- Return type
torch.Tensor
- class mmdet.models.losses.GHMC(bins=10, momentum=0, use_sigmoid=True, loss_weight=1.0, reduction='mean')[source]¶
GHM Classification Loss.
Details of the theorem can be viewed in the paper Gradient Harmonized Single-stage Detector.
- Parameters
bins (int) – Number of the unit regions for distribution calculation.
momentum (float) – The parameter for moving average.
use_sigmoid (bool) – Can only be true for BCE based loss now.
loss_weight (float) – The weight of the total GHM-C loss.
reduction (str) – Options are “none”, “mean” and “sum”. Defaults to “mean”
- forward(pred, target, label_weight, reduction_override=None, **kwargs)[source]¶
Calculate the GHM-C loss.
- Parameters
pred (float tensor of size [batch_num, class_num]) – The direct prediction of classification fc layer.
target (float tensor of size [batch_num, class_num]) – Binary class target for each sample.
label_weight (float tensor of size [batch_num, class_num]) – the value is 1 if the sample is valid and 0 if ignored.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- Returns
The gradient harmonized loss.
- class mmdet.models.losses.GHMR(mu=0.02, bins=10, momentum=0, loss_weight=1.0, reduction='mean')[source]¶
GHM Regression Loss.
Details of the theorem can be viewed in the paper Gradient Harmonized Single-stage Detector.
- Parameters
mu (float) – The parameter for the Authentic Smooth L1 loss.
bins (int) – Number of the unit regions for distribution calculation.
momentum (float) – The parameter for moving average.
loss_weight (float) – The weight of the total GHM-R loss.
reduction (str) – Options are “none”, “mean” and “sum”. Defaults to “mean”
- forward(pred, target, label_weight, avg_factor=None, reduction_override=None)[source]¶
Calculate the GHM-R loss.
- Parameters
pred (float tensor of size [batch_num, 4 (* class_num)]) – The prediction of box regression layer. Channel number can be 4 or 4 * class_num depending on whether it is class-agnostic.
target (float tensor of size [batch_num, 4 (* class_num)]) – The target regression values with the same size of pred.
label_weight (float tensor of size [batch_num, 4 (* class_num)]) – The weight of each sample, 0 if ignored.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- Returns
The gradient harmonized loss.
- class mmdet.models.losses.GIoULoss(eps: float = 1e-06, reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
Generalized Intersection over Union: A Metric and A Loss for Bounding Box Regression.
- Parameters
eps (float) – Epsilon to avoid log(0).
reduction (str) – Options are “none”, “mean” and “sum”.
loss_weight (float) – Weight of loss.
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None, **kwargs) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – The learning target of the prediction, shape (n, 4).
weight (Optional[Tensor], optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (Optional[int], optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (Optional[str], optional) – The reduction method used to override the original reduction method of the loss. Defaults to None. Options are “none”, “mean” and “sum”.
- Returns
Loss tensor.
- Return type
Tensor
- class mmdet.models.losses.GaussianFocalLoss(alpha: float = 2.0, gamma: float = 4.0, reduction: str = 'mean', loss_weight: float = 1.0, pos_weight: float = 1.0, neg_weight: float = 1.0)[source]¶
GaussianFocalLoss is a variant of focal loss.
More details can be found in the paper Code is modified from kp_utils.py # noqa: E501 Please notice that the target in GaussianFocalLoss is a gaussian heatmap, not 0/1 binary target.
- Parameters
alpha (float) – Power of prediction.
gamma (float) – Power of target for negative samples.
reduction (str) – Options are “none”, “mean” and “sum”.
loss_weight (float) – Loss weight of current loss.
pos_weight (float) – Positive sample loss weight. Defaults to 1.0.
neg_weight (float) – Negative sample loss weight. Defaults to 1.0.
- forward(pred: Tensor, target: Tensor, pos_inds: Optional[Tensor] = None, pos_labels: Optional[Tensor] = None, weight: Optional[Tensor] = None, avg_factor: Optional[Union[int, float]] = None, reduction_override: Optional[str] = None) Tensor [source]¶
Forward function.
If you want to manually determine which positions are positive samples, you can set the pos_index and pos_label parameter. Currently, only the CenterNet update version uses the parameter.
- Parameters
pred (torch.Tensor) – The prediction. The shape is (N, num_classes).
target (torch.Tensor) – The learning target of the prediction in gaussian distribution. The shape is (N, num_classes).
pos_inds (torch.Tensor) – The positive sample index. Defaults to None.
pos_labels (torch.Tensor) – The label corresponding to the positive sample index. Defaults to None.
weight (torch.Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, float, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- class mmdet.models.losses.IoULoss(linear: bool = False, eps: float = 1e-06, reduction: str = 'mean', loss_weight: float = 1.0, mode: str = 'log')[source]¶
IoULoss.
Computing the IoU loss between a set of predicted bboxes and target bboxes.
- Parameters
linear (bool) – If True, use linear scale of loss else determined by mode. Default: False.
eps (float) – Epsilon to avoid log(0).
reduction (str) – Options are “none”, “mean” and “sum”.
loss_weight (float) – Weight of loss.
mode (str) – Loss scaling mode, including “linear”, “square”, and “log”. Default: ‘log’
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None, **kwargs) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – The learning target of the prediction, shape (n, 4).
weight (Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None. Options are “none”, “mean” and “sum”.
- Returns
Loss tensor.
- Return type
Tensor
- class mmdet.models.losses.KnowledgeDistillationKLDivLoss(reduction: str = 'mean', loss_weight: float = 1.0, T: int = 10)[source]¶
Loss function for knowledge distilling using KL divergence.
- Parameters
reduction (str) – Options are ‘none’, ‘mean’ and ‘sum’.
loss_weight (float) – Loss weight of current loss.
T (int) – Temperature for distillation.
- forward(pred: Tensor, soft_label: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – Predicted logits with shape (N, n + 1).
soft_label (Tensor) – Target logits with shape (N, N + 1).
weight (Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- Returns
Loss tensor.
- Return type
Tensor
- class mmdet.models.losses.L1Loss(reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
L1 loss.
- Parameters
reduction (str, optional) – The method to reduce the loss. Options are “none”, “mean” and “sum”.
loss_weight (float, optional) – The weight of loss.
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – The prediction.
target (Tensor) – The learning target of the prediction.
weight (Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- Returns
Calculated loss
- Return type
Tensor
- class mmdet.models.losses.L2Loss(neg_pos_ub: int = -1, pos_margin: float = -1, neg_margin: float = -1, hard_mining: bool = False, reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
L2 loss.
- Parameters
reduction (str, optional) – The method to reduce the loss. Options are “none”, “mean” and “sum”.
loss_weight (float, optional) – The weight of loss.
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[float] = None, reduction_override: Optional[str] = None) Tensor [source]¶
Forward function.
- Parameters
pred (torch.Tensor) – The prediction.
target (torch.Tensor) – The learning target of the prediction.
weight (torch.Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (float, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- class mmdet.models.losses.MSELoss(reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
MSELoss.
- Parameters
reduction (str, optional) – The method that reduces the loss to a scalar. Options are “none”, “mean” and “sum”.
loss_weight (float, optional) – The weight of the loss. Defaults to 1.0
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None) Tensor [source]¶
Forward function of loss.
- Parameters
pred (Tensor) – The prediction.
target (Tensor) – The learning target of the prediction.
weight (Tensor, optional) – Weight of the loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- Returns
The calculated loss.
- Return type
Tensor
- class mmdet.models.losses.MarginL2Loss(neg_pos_ub: int = -1, pos_margin: float = -1, neg_margin: float = -1, hard_mining: bool = False, reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
L2 loss with margin.
- Parameters
neg_pos_ub (int, optional) – The upper bound of negative to positive samples in hard mining. Defaults to -1.
pos_margin (float, optional) – The similarity margin for positive samples in hard mining. Defaults to -1.
neg_margin (float, optional) – The similarity margin for negative samples in hard mining. Defaults to -1.
hard_mining (bool, optional) – Whether to use hard mining. Defaults to False.
reduction (str, optional) – The method to reduce the loss. Options are “none”, “mean” and “sum”. Defaults to “mean”.
loss_weight (float, optional) – The weight of loss. Defaults to 1.0.
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[float] = None, reduction_override: Optional[str] = None) Tensor [source]¶
Forward function.
- Parameters
pred (torch.Tensor) – The prediction.
target (torch.Tensor) – The learning target of the prediction.
weight (torch.Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (float, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- static random_choice(gallery: Union[list, ndarray, Tensor], num: int) ndarray [source]¶
Random select some elements from the gallery.
It seems that Pytorch’s implementation is slower than numpy so we use numpy to randperm the indices.
- Parameters
gallery (list | np.ndarray | torch.Tensor) – The gallery from which to sample.
num (int) – The number of elements to sample.
- update_weight(pred: Tensor, target: Tensor, weight: Tensor, avg_factor: float) Tuple[Tensor, Tensor, float] [source]¶
Update the weight according to targets.
- Parameters
pred (torch.Tensor) – The prediction.
target (torch.Tensor) – The learning target of the prediction.
weight (torch.Tensor) – The weight of loss for each prediction.
avg_factor (float) – Average factor that is used to average the loss.
- Returns
The updated prediction, weight and average factor.
- Return type
tuple[torch.Tensor]
- class mmdet.models.losses.MultiPosCrossEntropyLoss(reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
Multi-positive targets cross entropy loss.
- Parameters
reduction (str, optional) – The method to reduce the loss. Options are “none”, “mean” and “sum”. Defaults to “mean”.
loss_weight (float, optional) – The weight of loss. Defaults to 1.0.
- forward(cls_score: Tensor, label: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[float] = None, reduction_override: Optional[str] = None, **kwargs) Tensor [source]¶
Forward function.
- Parameters
cls_score (torch.Tensor) – The classification score.
label (torch.Tensor) – The assigned label of the prediction.
weight (torch.Tensor) – The element-wise weight.
avg_factor (float) – Average factor when computing the mean of losses.
reduction_override (str) – Same as built-in losses of PyTorch.
- Returns
Calculated loss
- Return type
torch.Tensor
- multi_pos_cross_entropy(pred: Tensor, label: Tensor, weight: Optional[Tensor] = None, reduction: str = 'mean', avg_factor: Optional[float] = None) Tensor [source]¶
Multi-positive targets cross entropy loss.
- Parameters
pred (torch.Tensor) – The prediction.
label (torch.Tensor) – The assigned label of the prediction.
weight (torch.Tensor) – The element-wise weight.
reduction (str) – Same as built-in losses of PyTorch.
avg_factor (float) – Average factor when computing the mean of losses.
- Returns
Calculated loss
- Return type
torch.Tensor
- class mmdet.models.losses.QualityFocalLoss(use_sigmoid=True, beta=2.0, reduction='mean', loss_weight=1.0, activated=False)[source]¶
Quality Focal Loss (QFL) is a variant of Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection.
- Parameters
use_sigmoid (bool) – Whether sigmoid operation is conducted in QFL. Defaults to True.
beta (float) – The beta parameter for calculating the modulating factor. Defaults to 2.0.
reduction (str) – Options are “none”, “mean” and “sum”.
loss_weight (float) – Loss weight of current loss.
activated (bool, optional) – Whether the input is activated. If True, it means the input has been activated and can be treated as probabilities. Else, it should be treated as logits. Defaults to False.
- forward(pred, target, weight=None, avg_factor=None, reduction_override=None)[source]¶
Forward function.
- Parameters
pred (torch.Tensor) – Predicted joint representation of classification and quality (IoU) estimation with shape (N, C), C is the number of classes.
target (Union(tuple([torch.Tensor]),Torch.Tensor)) – The type is tuple, it should be included Target category label with shape (N,) and target quality label with shape (N,).The type is torch.Tensor, the target should be one-hot form with soft weights.
weight (torch.Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- class mmdet.models.losses.SIoULoss(eps: float = 1e-06, reduction: str = 'mean', loss_weight: float = 1.0, neg_gamma: bool = False)[source]¶
Implementation of paper `SIoU Loss: More Powerful Learning for Bounding Box Regression.
Code is modified from https://github.com/meituan/YOLOv6.
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – Corresponding gt bboxes, shape (n, 4).
eps (float) – Eps to avoid log(0).
neg_gamma (bool) – True follows original implementation in paper.
- Returns
Loss tensor.
- Return type
Tensor
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None, **kwargs) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – The learning target of the prediction, shape (n, 4).
weight (Optional[Tensor], optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (Optional[int], optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (Optional[str], optional) – The reduction method used to override the original reduction method of the loss. Defaults to None. Options are “none”, “mean” and “sum”.
- Returns
Loss tensor.
- Return type
Tensor
- class mmdet.models.losses.SeesawLoss(use_sigmoid: bool = False, p: float = 0.8, q: float = 2.0, num_classes: int = 1203, eps: float = 0.01, reduction: str = 'mean', loss_weight: float = 1.0, return_dict: bool = True)[source]¶
Seesaw Loss for Long-Tailed Instance Segmentation (CVPR 2021) arXiv: https://arxiv.org/abs/2008.10032
- Parameters
use_sigmoid (bool, optional) – Whether the prediction uses sigmoid of softmax. Only False is supported.
p (float, optional) – The
p
in the mitigation factor. Defaults to 0.8.q (float, optional) – The
q
in the compenstation factor. Defaults to 2.0.num_classes (int, optional) – The number of classes. Default to 1203 for LVIS v1 dataset.
eps (float, optional) – The minimal value of divisor to smooth the computation of compensation factor
reduction (str, optional) – The method that reduces the loss to a scalar. Options are “none”, “mean” and “sum”.
loss_weight (float, optional) – The weight of the loss. Defaults to 1.0
return_dict (bool, optional) – Whether return the losses as a dict. Default to True.
- forward(cls_score: Tensor, labels: Tensor, label_weights: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None) Union[Tensor, Dict[str, Tensor]] [source]¶
Forward function.
- Parameters
cls_score (Tensor) – The prediction with shape (N, C + 2).
labels (Tensor) – The learning label of the prediction.
label_weights (Tensor, optional) – Sample-wise loss weight.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction (str, optional) – The method used to reduce the loss. Options are “none”, “mean” and “sum”.
- Returns
if return_dict == False: The calculated loss | if return_dict == True: The dict of calculated losses for objectness and classes, respectively.
- Return type
Tensor | Dict [str, Tensor]
- get_accuracy(cls_score: Tensor, labels: Tensor) Dict[str, Tensor] [source]¶
Get custom accuracy w.r.t. cls_score and labels.
- Parameters
cls_score (Tensor) – The prediction with shape (N, C + 2).
labels (Tensor) – The learning label of the prediction.
- Returns
- The accuracy for objectness and classes,
respectively.
- Return type
Dict [str, Tensor]
- class mmdet.models.losses.SmoothL1Loss(beta: float = 1.0, reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
Smooth L1 loss.
- Parameters
beta (float, optional) – The threshold in the piecewise function. Defaults to 1.0.
reduction (str, optional) – The method to reduce the loss. Options are “none”, “mean” and “sum”. Defaults to “mean”.
loss_weight (float, optional) – The weight of loss.
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None, **kwargs) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – The prediction.
target (Tensor) – The learning target of the prediction.
weight (Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Defaults to None.
- Returns
Calculated loss
- Return type
Tensor
- class mmdet.models.losses.TripletLoss(margin: float = 0.3, loss_weight: float = 1.0, hard_mining=True)[source]¶
Triplet loss with hard positive/negative mining.
- Reference:
- Hermans et al. In Defense of the Triplet Loss for
Person Re-Identification. arXiv:1703.07737.
- Imported from `<https://github.com/KaiyangZhou/deep-person-reid/blob/
master/torchreid/losses/hard_mine_triplet_loss.py>`_.
- Parameters
margin (float, optional) – Margin for triplet loss. Defaults to 0.3.
loss_weight (float, optional) – Weight of the loss. Defaults to 1.0.
hard_mining (bool, optional) – Whether to perform hard mining. Defaults to True.
- forward(inputs: Tensor, targets: LongTensor) Tensor [source]¶
- Parameters
inputs (torch.Tensor) – feature matrix with shape (batch_size, feat_dim).
targets (torch.LongTensor) – ground truth labels with shape (num_classes).
- Returns
triplet loss.
- Return type
torch.Tensor
- hard_mining_triplet_loss_forward(inputs: Tensor, targets: LongTensor) Tensor [source]¶
- Parameters
inputs (torch.Tensor) – feature matrix with shape (batch_size, feat_dim).
targets (torch.LongTensor) – ground truth labels with shape (batch_size).
- Returns
triplet loss with hard mining.
- Return type
torch.Tensor
- class mmdet.models.losses.VarifocalLoss(use_sigmoid: bool = True, alpha: float = 0.75, gamma: float = 2.0, iou_weighted: bool = True, reduction: str = 'mean', loss_weight: float = 1.0)[source]¶
- forward(pred: Tensor, target: Tensor, weight: Optional[Tensor] = None, avg_factor: Optional[int] = None, reduction_override: Optional[str] = None) Tensor [source]¶
Forward function.
- Parameters
pred (Tensor) – The prediction with shape (N, C), C is the number of classes.
target (Tensor) – The learning target of the iou-aware classification score with shape (N, C), C is the number of classes.
weight (Tensor, optional) – The weight of loss for each prediction. Defaults to None.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”.
- Returns
The calculated loss
- Return type
Tensor
- mmdet.models.losses.accuracy(pred, target, topk=1, thresh=None)[source]¶
Calculate accuracy according to the prediction and target.
- Parameters
pred (torch.Tensor) – The model prediction, shape (N, num_class)
target (torch.Tensor) – The target of each prediction, shape (N, )
topk (int | tuple[int], optional) – If the predictions in
topk
matches the target, the predictions will be regarded as correct ones. Defaults to 1.thresh (float, optional) – If not None, predictions with scores under this threshold are considered incorrect. Default to None.
- Returns
- If the input
topk
is a single integer, the function will return a single float as accuracy. If
topk
is a tuple containing multiple integers, the function will return a tuple containing accuracies of eachtopk
number.
- If the input
- Return type
float | tuple[float]
- mmdet.models.losses.balanced_l1_loss(pred, target, beta=1.0, alpha=0.5, gamma=1.5, reduction='mean')[source]¶
Calculate balanced L1 loss.
Please see the Libra R-CNN
- Parameters
pred (torch.Tensor) – The prediction with shape (N, 4).
target (torch.Tensor) – The learning target of the prediction with shape (N, 4).
beta (float) – The loss is a piecewise function of prediction and target and
beta
serves as a threshold for the difference between the prediction and target. Defaults to 1.0.alpha (float) – The denominator
alpha
in the balanced L1 loss. Defaults to 0.5.gamma (float) – The
gamma
in the balanced L1 loss. Defaults to 1.5.reduction (str, optional) – The method that reduces the loss to a scalar. Options are “none”, “mean” and “sum”.
- Returns
The calculated loss
- Return type
torch.Tensor
- mmdet.models.losses.binary_cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None, ignore_index=-100, avg_non_ignore=False)[source]¶
Calculate the binary CrossEntropy loss.
- Parameters
pred (torch.Tensor) – The prediction with shape (N, 1) or (N, ). When the shape of pred is (N, 1), label will be expanded to one-hot format, and when the shape of pred is (N, ), label will not be expanded to one-hot format.
label (torch.Tensor) – The learning label of the prediction, with shape (N, ).
weight (torch.Tensor, optional) – Sample-wise loss weight.
reduction (str, optional) – The method used to reduce the loss. Options are “none”, “mean” and “sum”.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
class_weight (list[float], optional) – The weight for each class.
ignore_index (int | None) – The label index to be ignored. If None, it will be set to default value. Default: -100.
avg_non_ignore (bool) – The flag decides to whether the loss is only averaged over non-ignored targets. Default: False.
- Returns
The calculated loss.
- Return type
torch.Tensor
- mmdet.models.losses.bounded_iou_loss(pred: Tensor, target: Tensor, beta: float = 0.2, eps: float = 0.001) Tensor [source]¶
BIoULoss.
This is an implementation of paper Improving Object Localization with Fitness NMS and Bounded IoU Loss..
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – Corresponding gt bboxes, shape (n, 4).
beta (float, optional) – Beta parameter in smoothl1.
eps (float, optional) – Epsilon to avoid NaN values.
- Returns
Loss tensor.
- Return type
Tensor
- mmdet.models.losses.carl_loss(cls_score: Tensor, labels: Tensor, bbox_pred: Tensor, bbox_targets: Tensor, loss_bbox: Module, k: float = 1, bias: float = 0.2, avg_factor: Optional[int] = None, sigmoid: bool = False, num_class: int = 80) dict [source]¶
Classification-Aware Regression Loss (CARL).
- Parameters
cls_score (Tensor) – Predicted classification scores.
labels (Tensor) – Targets of classification.
bbox_pred (Tensor) – Predicted bbox deltas.
bbox_targets (Tensor) – Target of bbox regression.
loss_bbox (func) – Regression loss func of the head.
bbox_coder (obj) – BBox coder of the head.
k (float) – Power of the non-linear mapping. Defaults to 1.
bias (float) – Shift of the non-linear mapping. Defaults to 0.2.
avg_factor (int, optional) – Average factor used in regression loss.
sigmoid (bool) – Activation of the classification score.
num_class (int) – Number of classes, defaults to 80.
- Returns
CARL loss dict.
- Return type
dict
- mmdet.models.losses.cross_entropy(pred, label, weight=None, reduction='mean', avg_factor=None, class_weight=None, ignore_index=-100, avg_non_ignore=False)[source]¶
Calculate the CrossEntropy loss.
- Parameters
pred (torch.Tensor) – The prediction with shape (N, C), C is the number of classes.
label (torch.Tensor) – The learning label of the prediction.
weight (torch.Tensor, optional) – Sample-wise loss weight.
reduction (str, optional) – The method used to reduce the loss.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
class_weight (list[float], optional) – The weight for each class.
ignore_index (int | None) – The label index to be ignored. If None, it will be set to default value. Default: -100.
avg_non_ignore (bool) – The flag decides to whether the loss is only averaged over non-ignored targets. Default: False.
- Returns
The calculated loss
- Return type
torch.Tensor
- mmdet.models.losses.iou_loss(pred: Tensor, target: Tensor, linear: bool = False, mode: str = 'log', eps: float = 1e-06) Tensor [source]¶
IoU loss.
Computing the IoU loss between a set of predicted bboxes and target bboxes. The loss is calculated as negative log of IoU.
- Parameters
pred (Tensor) – Predicted bboxes of format (x1, y1, x2, y2), shape (n, 4).
target (Tensor) – Corresponding gt bboxes, shape (n, 4).
linear (bool, optional) – If True, use linear scale of loss instead of log scale. Default: False.
mode (str) – Loss scaling mode, including “linear”, “square”, and “log”. Default: ‘log’
eps (float) – Epsilon to avoid log(0).
- Returns
Loss tensor.
- Return type
Tensor
- mmdet.models.losses.isr_p(cls_score: Tensor, bbox_pred: Tensor, bbox_targets: Tuple[Tensor], rois: Tensor, sampling_results: List[SamplingResult], loss_cls: Module, bbox_coder: BaseBBoxCoder, k: float = 2, bias: float = 0, num_class: int = 80) tuple [source]¶
Importance-based Sample Reweighting (ISR_P), positive part.
- Parameters
cls_score (Tensor) – Predicted classification scores.
bbox_pred (Tensor) – Predicted bbox deltas.
bbox_targets (tuple[Tensor]) – A tuple of bbox targets, the are labels, label_weights, bbox_targets, bbox_weights, respectively.
rois (Tensor) – Anchors (single_stage) in shape (n, 4) or RoIs (two_stage) in shape (n, 5).
sampling_results (
SamplingResult
) – Sampling results.loss_cls (
nn.Module
) – Classification loss func of the head.bbox_coder (
BaseBBoxCoder
) – BBox coder of the head.k (float) – Power of the non-linear mapping. Defaults to 2.
bias (float) – Shift of the non-linear mapping. Defaults to 0.
num_class (int) – Number of classes, defaults to 80.
- Returns
- labels, imp_based_label_weights, bbox_targets,
bbox_target_weights
- Return type
tuple([Tensor])
- mmdet.models.losses.l1_loss(pred: Tensor, target: Tensor) Tensor [source]¶
L1 loss.
- Parameters
pred (Tensor) – The prediction.
target (Tensor) – The learning target of the prediction.
- Returns
Calculated loss
- Return type
Tensor
- mmdet.models.losses.mask_cross_entropy(pred, target, label, reduction='mean', avg_factor=None, class_weight=None, ignore_index=None, **kwargs)[source]¶
Calculate the CrossEntropy loss for masks.
- Parameters
pred (torch.Tensor) – The prediction with shape (N, C, *), C is the number of classes. The trailing * indicates arbitrary shape.
target (torch.Tensor) – The learning label of the prediction.
label (torch.Tensor) –
label
indicates the class label of the mask corresponding object. This will be used to select the mask in the of the class which the object belongs to when the mask prediction if not class-agnostic.reduction (str, optional) – The method used to reduce the loss. Options are “none”, “mean” and “sum”.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
class_weight (list[float], optional) – The weight for each class.
ignore_index (None) – Placeholder, to be consistent with other loss. Default: None.
- Returns
The calculated loss
- Return type
torch.Tensor
Example
>>> N, C = 3, 11 >>> H, W = 2, 2 >>> pred = torch.randn(N, C, H, W) * 1000 >>> target = torch.rand(N, H, W) >>> label = torch.randint(0, C, size=(N,)) >>> reduction = 'mean' >>> avg_factor = None >>> class_weights = None >>> loss = mask_cross_entropy(pred, target, label, reduction, >>> avg_factor, class_weights) >>> assert loss.shape == (1,)
- mmdet.models.losses.mse_loss(pred: Tensor, target: Tensor) Tensor [source]¶
A Wrapper of MSE loss. :param pred: The prediction. :type pred: Tensor :param target: The learning target of the prediction. :type target: Tensor
- Returns
loss Tensor
- Return type
Tensor
- mmdet.models.losses.reduce_loss(loss: Tensor, reduction: str) Tensor [source]¶
Reduce loss as specified.
- Parameters
loss (Tensor) – Elementwise loss tensor.
reduction (str) – Options are “none”, “mean” and “sum”.
- Returns
Reduced loss tensor.
- Return type
Tensor
- mmdet.models.losses.sigmoid_focal_loss(pred, target, weight=None, gamma=2.0, alpha=0.25, reduction='mean', avg_factor=None)[source]¶
A wrapper of cuda version Focal Loss.
- Parameters
pred (torch.Tensor) – The prediction with shape (N, C), C is the number of classes.
target (torch.Tensor) – The learning label of the prediction.
weight (torch.Tensor, optional) – Sample-wise loss weight.
gamma (float, optional) – The gamma for calculating the modulating factor. Defaults to 2.0.
alpha (float, optional) – A balanced form for Focal Loss. Defaults to 0.25.
reduction (str, optional) – The method used to reduce the loss into a scalar. Defaults to ‘mean’. Options are “none”, “mean” and “sum”.
avg_factor (int, optional) – Average factor that is used to average the loss. Defaults to None.
- mmdet.models.losses.smooth_l1_loss(pred: Tensor, target: Tensor, beta: float = 1.0) Tensor [source]¶
Smooth L1 loss.
- Parameters
pred (Tensor) – The prediction.
target (Tensor) – The learning target of the prediction.
beta (float, optional) – The threshold in the piecewise function. Defaults to 1.0.
- Returns
Calculated loss
- Return type
Tensor
- mmdet.models.losses.weight_reduce_loss(loss: Tensor, weight: Optional[Tensor] = None, reduction: str = 'mean', avg_factor: Optional[float] = None) Tensor [source]¶
Apply element-wise weight and reduce loss.
- Parameters
loss (Tensor) – Element-wise loss.
weight (Optional[Tensor], optional) – Element-wise weights. Defaults to None.
reduction (str, optional) – Same as built-in losses of PyTorch. Defaults to ‘mean’.
avg_factor (Optional[float], optional) – Average factor when computing the mean of losses. Defaults to None.
- Returns
Processed loss values.
- Return type
Tensor
- mmdet.models.losses.weighted_loss(loss_func: Callable) Callable [source]¶
Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like loss_func(pred, target, **kwargs). The function only needs to compute element-wise loss without any reduction. This decorator will add weight and reduction arguments to the function. The decorated function will have the signature like loss_func(pred, target, weight=None, reduction=’mean’, avg_factor=None, **kwargs).
- Example
>>> import torch >>> @weighted_loss >>> def l1_loss(pred, target): >>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3]) >>> target = torch.Tensor([1, 1, 1]) >>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target) tensor(1.3333) >>> l1_loss(pred, target, weight) tensor(1.) >>> l1_loss(pred, target, reduction='none') tensor([1., 1., 2.]) >>> l1_loss(pred, target, weight, avg_factor=2) tensor(1.5000)
necks¶
- class mmdet.models.necks.BFP(Balanced Feature Pyramids)[source]¶
BFP takes multi-level features as inputs and gather them into a single one, then refine the gathered feature and scatter the refined results to multi-level features. This module is used in Libra R-CNN (CVPR 2019), see the paper Libra R-CNN: Towards Balanced Learning for Object Detection for details.
- Parameters
in_channels (int) – Number of input channels (feature maps of all levels should have the same channels).
num_levels (int) – Number of input feature levels.
refine_level (int) – Index of integration and refine level of BSF in multi-level features from bottom to top.
refine_type (str) – Type of the refine op, currently support [None, ‘conv’, ‘non_local’].
conv_cfg (
ConfigDict
or dict, optional) – The config dict for convolution layers.norm_cfg (
ConfigDict
or dict, optional) – The config dict for normalization layers.
:param init_cfg (
ConfigDict
or dict or list[ConfigDict
or: dict], optional): Initialization config dict.
- class mmdet.models.necks.CLRFPN(in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False, extra_convs_on_inputs=True, relu_before_extra_convs=False, no_norm_on_lateral=False, conv_cfg=None, norm_cfg=None, attention=False, act_cfg=None, upsample_cfg={'mode': 'nearest'}, init_cfg={'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'}, cfg=None)[source]¶
- class mmdet.models.necks.CSPNeXtPAFPN(in_channels: Sequence[int], out_channels: int, num_csp_blocks: int = 3, use_depthwise: bool = False, expand_ratio: float = 0.5, upsample_cfg: Union[ConfigDict, dict] = {'mode': 'nearest', 'scale_factor': 2}, conv_cfg: Optional[bool] = None, norm_cfg: Union[ConfigDict, dict] = {'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg: Union[ConfigDict, dict] = {'type': 'Swish'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = {'a': 2.23606797749979, 'distribution': 'uniform', 'layer': 'Conv2d', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu', 'type': 'Kaiming'})[source]¶
Path Aggregation Network with CSPNeXt blocks.
- Parameters
in_channels (Sequence[int]) – Number of input channels per scale.
out_channels (int) – Number of output channels (used at each scale)
num_csp_blocks (int) – Number of bottlenecks in CSPLayer. Defaults to 3.
use_depthwise (bool) – Whether to use depthwise separable convolution in blocks. Defaults to False.
expand_ratio (float) – Ratio to adjust the number of channels of the hidden layer. Default: 0.5
upsample_cfg (dict) – Config dict for interpolate layer. Default: dict(scale_factor=2, mode=’nearest’)
conv_cfg (dict, optional) – Config dict for convolution layer. Default: None, which means using conv2d.
norm_cfg (dict) – Config dict for normalization layer. Default: dict(type=’BN’)
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’Swish’)
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None.
- class mmdet.models.necks.CTResNetNeck(in_channels: int, num_deconv_filters: Tuple[int, ...], num_deconv_kernels: Tuple[int, ...], use_dcn: bool = True, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
The neck used in CenterNet for object classification and box regression.
- Parameters
in_channels (int) – Number of input channels.
num_deconv_filters (tuple[int]) – Number of filters per stage.
num_deconv_kernels (tuple[int]) – Number of kernels per stage.
use_dcn (bool) – If True, use DCNv2. Defaults to True.
- :param init_cfg (
ConfigDict
or dict or list[dict] or: list[ConfigDict
], optional): Initialization config dict.
- class mmdet.models.necks.ChannelMapper(in_channels: List[int], out_channels: int, kernel_size: int = 3, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, act_cfg: Optional[Union[ConfigDict, dict]] = {'type': 'ReLU'}, bias: Union[bool, str] = 'auto', num_outs: Optional[int] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = {'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'})[source]¶
Channel Mapper to reduce/increase channels of backbone features.
This is used to reduce/increase channels of backbone features.
- Parameters
in_channels (List[int]) – Number of input channels per scale.
out_channels (int) – Number of output channels (used at each scale).
kernel_size (int, optional) – kernel_size for reducing channels (used at each scale). Default: 3.
conv_cfg (
ConfigDict
or dict, optional) – Config dict for convolution layer. Default: None.norm_cfg (
ConfigDict
or dict, optional) – Config dict for normalization layer. Default: None.act_cfg (
ConfigDict
or dict, optional) – Config dict for activation layer in ConvModule. Default: dict(type=’ReLU’).bias (bool | str) – If specified as auto, it will be decided by the norm_cfg. Bias will be set as True if norm_cfg is None, otherwise False. Default: “auto”.
num_outs (int, optional) – Number of output feature maps. There would be extra_convs when num_outs larger than the length of in_channels.
:param init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict]: optional): Initialization config dict. :param : optional): Initialization config dict.Example
>>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = ChannelMapper(in_channels, 11, 3).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43])
- class mmdet.models.necks.DilatedEncoder(in_channels, out_channels, block_mid_channels, num_residual_blocks, block_dilations)[source]¶
Dilated Encoder for YOLOF <https://arxiv.org/abs/2103.09460>`.
- This module contains two types of components:
- the original FPN lateral convolution layer and fpn convolution layer,
which are 1x1 conv + 3x3 conv
the dilated residual block
- Parameters
in_channels (int) – The number of input channels.
out_channels (int) – The number of output channels.
block_mid_channels (int) – The number of middle block output channels
num_residual_blocks (int) – The number of residual blocks.
block_dilations (list) – The list of residual blocks dilation.
- forward(feature)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.necks.DyHead(in_channels, out_channels, num_blocks=6, zero_init_offset=True, init_cfg=None)[source]¶
DyHead neck consisting of multiple DyHead Blocks.
See Dynamic Head: Unifying Object Detection Heads with Attentions for details.
- Parameters
in_channels (int) – Number of input channels.
out_channels (int) – Number of output channels.
num_blocks (int, optional) – Number of DyHead Blocks. Default: 6.
zero_init_offset (bool, optional) – Whether to use zero init for spatial_conv_offset. Default: True.
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None.
- class mmdet.models.necks.FPG(in_channels, out_channels, num_outs, stack_times, paths, inter_channels=None, same_down_trans=None, same_up_trans={'kernel_size': 3, 'padding': 1, 'stride': 2, 'type': 'conv'}, across_lateral_trans={'kernel_size': 1, 'type': 'conv'}, across_down_trans={'kernel_size': 3, 'type': 'conv'}, across_up_trans=None, across_skip_trans={'type': 'identity'}, output_trans={'kernel_size': 3, 'type': 'last_conv'}, start_level=0, end_level=-1, add_extra_convs=False, norm_cfg=None, skip_inds=None, init_cfg=[{'type': 'Caffe2Xavier', 'layer': 'Conv2d'}, {'type': 'Constant', 'layer': ['_BatchNorm', '_InstanceNorm', 'GroupNorm', 'LayerNorm'], 'val': 1.0}])[source]¶
FPG.
Implementation of Feature Pyramid Grids (FPG). This implementation only gives the basic structure stated in the paper. But users can implement different type of transitions to fully explore the the potential power of the structure of FPG.
- Parameters
in_channels (int) – Number of input channels (feature maps of all levels should have the same channels).
out_channels (int) – Number of output channels (used at each scale)
num_outs (int) – Number of output scales.
stack_times (int) – The number of times the pyramid architecture will be stacked.
paths (list[str]) – Specify the path order of each stack level. Each element in the list should be either ‘bu’ (bottom-up) or ‘td’ (top-down).
inter_channels (int) – Number of inter channels.
same_up_trans (dict) – Transition that goes down at the same stage.
same_down_trans (dict) – Transition that goes up at the same stage.
across_lateral_trans (dict) – Across-pathway same-stage
across_down_trans (dict) – Across-pathway bottom-up connection.
across_up_trans (dict) – Across-pathway top-down connection.
across_skip_trans (dict) – Across-pathway skip connection.
output_trans (dict) – Transition that trans the output of the last stage.
start_level (int) – Index of the start input backbone level used to build the feature pyramid. Default: 0.
end_level (int) – Index of the end input backbone level (exclusive) to build the feature pyramid. Default: -1, which means the last level.
add_extra_convs (bool) – It decides whether to add conv layers on top of the original feature maps. Default to False. If True, its actual mode is specified by extra_convs_on_inputs.
norm_cfg (dict) – Config dict for normalization layer. Default: None.
init_cfg (dict or list[dict], optional) – Initialization config dict.
- forward(inputs)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.necks.FPN(in_channels: List[int], out_channels: int, num_outs: int, start_level: int = 0, end_level: int = -1, add_extra_convs: Union[bool, str] = False, relu_before_extra_convs: bool = False, no_norm_on_lateral: bool = False, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, act_cfg: Optional[Union[ConfigDict, dict]] = None, upsample_cfg: Union[ConfigDict, dict] = {'mode': 'nearest'}, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'})[source]¶
Feature Pyramid Network.
This is an implementation of paper Feature Pyramid Networks for Object Detection.
- Parameters
in_channels (list[int]) – Number of input channels per scale.
out_channels (int) – Number of output channels (used at each scale).
num_outs (int) – Number of output scales.
start_level (int) – Index of the start input backbone level used to build the feature pyramid. Defaults to 0.
end_level (int) – Index of the end input backbone level (exclusive) to build the feature pyramid. Defaults to -1, which means the last level.
add_extra_convs (bool | str) –
If bool, it decides whether to add conv layers on top of the original feature maps. Defaults to False. If True, it is equivalent to add_extra_convs=’on_input’. If str, it specifies the source feature map of the extra convs. Only the following options are allowed
’on_input’: Last feat map of neck inputs (i.e. backbone feature).
’on_lateral’: Last feature map after lateral convs.
’on_output’: The last output feature map after fpn convs.
relu_before_extra_convs (bool) – Whether to apply relu before the extra conv. Defaults to False.
no_norm_on_lateral (bool) – Whether to apply norm on lateral. Defaults to False.
conv_cfg (
ConfigDict
or dict, optional) – Config dict for convolution layer. Defaults to None.norm_cfg (
ConfigDict
or dict, optional) – Config dict for normalization layer. Defaults to None.act_cfg (
ConfigDict
or dict, optional) – Config dict for activation layer in ConvModule. Defaults to None.upsample_cfg (
ConfigDict
or dict, optional) – Config dict for interpolate layer. Defaults to dict(mode=’nearest’).
:param init_cfg (
ConfigDict
or dict or list[ConfigDict
or : dict]): Initialization config dict.Example
>>> import torch >>> in_channels = [2, 3, 5, 7] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = FPN(in_channels, 11, len(in_channels)).eval() >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 11, 340, 340]) outputs[1].shape = torch.Size([1, 11, 170, 170]) outputs[2].shape = torch.Size([1, 11, 84, 84]) outputs[3].shape = torch.Size([1, 11, 43, 43])
- class mmdet.models.necks.FPN_CARAFE(in_channels, out_channels, num_outs, start_level=0, end_level=-1, norm_cfg=None, act_cfg=None, order=('conv', 'norm', 'act'), upsample_cfg={'encoder_dilation': 1, 'encoder_kernel': 3, 'type': 'carafe', 'up_group': 1, 'up_kernel': 5}, init_cfg=None)[source]¶
FPN_CARAFE is a more flexible implementation of FPN. It allows more choice for upsample methods during the top-down pathway.
It can reproduce the performance of ICCV 2019 paper CARAFE: Content-Aware ReAssembly of FEatures Please refer to https://arxiv.org/abs/1905.02188 for more details.
- Parameters
in_channels (list[int]) – Number of channels for each input feature map.
out_channels (int) – Output channels of feature pyramids.
num_outs (int) – Number of output stages.
start_level (int) – Start level of feature pyramids. (Default: 0)
end_level (int) – End level of feature pyramids. (Default: -1 indicates the last level).
norm_cfg (dict) – Dictionary to construct and config norm layer.
activate (str) – Type of activation function in ConvModule (Default: None indicates w/o activation).
order (dict) – Order of components in ConvModule.
upsample (str) – Type of upsample layer.
upsample_cfg (dict) – Dictionary to construct and config upsample layer.
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
- class mmdet.models.necks.FPN_DropBlock(*args, plugin: Optional[dict] = {'block_size': 3, 'drop_prob': 0.3, 'type': 'DropBlock', 'warmup_iters': 0}, **kwargs)[source]¶
- class mmdet.models.necks.HRFPN(High Resolution Feature Pyramids)[source]¶
paper: High-Resolution Representations for Labeling Pixels and Regions.
- Parameters
in_channels (list) – number of channels for each branch.
out_channels (int) – output channels of feature pyramids.
num_outs (int) – number of output stages.
pooling_type (str) – pooling for generating feature pyramids from {MAX, AVG}.
conv_cfg (dict) – dictionary to construct and config conv layer.
norm_cfg (dict) – dictionary to construct and config norm layer.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed.
stride (int) – stride of 3x3 convolutional layers
init_cfg (dict or list[dict], optional) – Initialization config dict.
- class mmdet.models.necks.NASFCOS_FPN(in_channels, out_channels, num_outs, start_level=1, end_level=-1, add_extra_convs=False, conv_cfg=None, norm_cfg=None, init_cfg=None)[source]¶
FPN structure in NASFPN.
Implementation of paper NAS-FCOS: Fast Neural Architecture Search for Object Detection
- Parameters
in_channels (List[int]) – Number of input channels per scale.
out_channels (int) – Number of output channels (used at each scale)
num_outs (int) – Number of output scales.
start_level (int) – Index of the start input backbone level used to build the feature pyramid. Default: 0.
end_level (int) – Index of the end input backbone level (exclusive) to build the feature pyramid. Default: -1, which means the last level.
add_extra_convs (bool) – It decides whether to add conv layers on top of the original feature maps. Default to False. If True, its actual mode is specified by extra_convs_on_inputs.
conv_cfg (dict) – dictionary to construct and config conv layer.
norm_cfg (dict) – dictionary to construct and config norm layer.
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
- class mmdet.models.necks.NASFPN(in_channels: List[int], out_channels: int, num_outs: int, stack_times: int, start_level: int = 0, end_level: int = -1, norm_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Conv2d', 'type': 'Caffe2Xavier'})[source]¶
NAS-FPN.
Implementation of NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection
- Parameters
in_channels (List[int]) – Number of input channels per scale.
out_channels (int) – Number of output channels (used at each scale)
num_outs (int) – Number of output scales.
stack_times (int) – The number of times the pyramid architecture will be stacked.
start_level (int) – Index of the start input backbone level used to build the feature pyramid. Defaults to 0.
end_level (int) – Index of the end input backbone level (exclusive) to build the feature pyramid. Defaults to -1, which means the last level.
norm_cfg (
ConfigDict
or dict, optional) – Config dict for normalization layer. Defaults to None.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict]) – Initialization config dict.
- class mmdet.models.necks.PAFPN(in_channels, out_channels, num_outs, start_level=0, end_level=-1, add_extra_convs=False, relu_before_extra_convs=False, no_norm_on_lateral=False, conv_cfg=None, norm_cfg=None, act_cfg=None, init_cfg={'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'})[source]¶
Path Aggregation Network for Instance Segmentation.
This is an implementation of the PAFPN in Path Aggregation Network.
- Parameters
in_channels (List[int]) – Number of input channels per scale.
out_channels (int) – Number of output channels (used at each scale)
num_outs (int) – Number of output scales.
start_level (int) – Index of the start input backbone level used to build the feature pyramid. Default: 0.
end_level (int) – Index of the end input backbone level (exclusive) to build the feature pyramid. Default: -1, which means the last level.
add_extra_convs (bool | str) –
If bool, it decides whether to add conv layers on top of the original feature maps. Default to False. If True, it is equivalent to add_extra_convs=’on_input’. If str, it specifies the source feature map of the extra convs. Only the following options are allowed
’on_input’: Last feat map of neck inputs (i.e. backbone feature).
’on_lateral’: Last feature map after lateral convs.
’on_output’: The last output feature map after fpn convs.
relu_before_extra_convs (bool) – Whether to apply relu before the extra conv. Default: False.
no_norm_on_lateral (bool) – Whether to apply norm on lateral. Default: False.
conv_cfg (dict) – Config dict for convolution layer. Default: None.
norm_cfg (dict) – Config dict for normalization layer. Default: None.
act_cfg (str) – Config dict for activation layer in ConvModule. Default: None.
init_cfg (dict or list[dict], optional) – Initialization config dict.
- class mmdet.models.necks.RFP(Recursive Feature Pyramid)[source]¶
This is an implementation of RFP in DetectoRS. Different from standard FPN, the input of RFP should be multi level features along with origin input image of backbone.
- Parameters
rfp_steps (int) – Number of unrolled steps of RFP.
rfp_backbone (dict) – Configuration of the backbone for RFP.
aspp_out_channels (int) – Number of output channels of ASPP module.
aspp_dilations (tuple[int]) – Dilation rates of four branches. Default: (1, 3, 6, 1)
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
- class mmdet.models.necks.SSDNeck(in_channels, out_channels, level_strides, level_paddings, l2_norm_scale=20.0, last_kernel_size=3, use_depthwise=False, conv_cfg=None, norm_cfg=None, act_cfg={'type': 'ReLU'}, init_cfg=[{'type': 'Xavier', 'distribution': 'uniform', 'layer': 'Conv2d'}, {'type': 'Constant', 'val': 1, 'layer': 'BatchNorm2d'}])[source]¶
Extra layers of SSD backbone to generate multi-scale feature maps.
- Parameters
in_channels (Sequence[int]) – Number of input channels per scale.
out_channels (Sequence[int]) – Number of output channels per scale.
level_strides (Sequence[int]) – Stride of 3x3 conv per level.
level_paddings (Sequence[int]) – Padding size of 3x3 conv per level.
l2_norm_scale (float|None) – L2 normalization layer init scale. If None, not use L2 normalization on the first input feature.
last_kernel_size (int) – Kernel size of the last conv layer. Default: 3.
use_depthwise (bool) – Whether to use DepthwiseSeparableConv. Default: False.
conv_cfg (dict) – Config dict for convolution layer. Default: None.
norm_cfg (dict) – Dictionary to construct and config norm layer. Default: None.
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’ReLU’).
init_cfg (dict or list[dict], optional) – Initialization config dict.
- class mmdet.models.necks.SSH(num_scales: int, in_channels: List[int], out_channels: List[int], conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'type': 'BN'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = {'distribution': 'uniform', 'layer': 'Conv2d', 'type': 'Xavier'})[source]¶
SSH Neck used in `SSH: Single Stage Headless Face Detector.
<https://arxiv.org/pdf/1708.03979.pdf>`_.
- Parameters
num_scales (int) – The number of scales / stages.
in_channels (list[int]) – The number of input channels per scale.
out_channels (list[int]) – The number of output channels per scale.
conv_cfg (
ConfigDict
or dict, optional) – Config dict for convolution layer. Defaults to None.norm_cfg (
ConfigDict
or dict) – Config dict for normalization layer. Defaults to dict(type=’BN’).
:param init_cfg (
ConfigDict
or list[ConfigDict
] or dict or: list[dict], optional): Initialization config dict.Example
>>> import torch >>> in_channels = [8, 16, 32, 64] >>> out_channels = [16, 32, 64, 128] >>> scales = [340, 170, 84, 43] >>> inputs = [torch.rand(1, c, s, s) ... for c, s in zip(in_channels, scales)] >>> self = SSH(num_scales=4, in_channels=in_channels, ... out_channels=out_channels) >>> outputs = self.forward(inputs) >>> for i in range(len(outputs)): ... print(f'outputs[{i}].shape = {outputs[i].shape}') outputs[0].shape = torch.Size([1, 16, 340, 340]) outputs[1].shape = torch.Size([1, 32, 170, 170]) outputs[2].shape = torch.Size([1, 64, 84, 84]) outputs[3].shape = torch.Size([1, 128, 43, 43])
- forward(inputs: Tuple[Tensor]) tuple [source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.necks.YOLOV3Neck(num_scales: int, in_channels: List[int], out_channels: List[int], conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'requires_grad': True, 'type': 'BN'}, act_cfg: Union[ConfigDict, dict] = {'negative_slope': 0.1, 'type': 'LeakyReLU'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
The neck of YOLOV3.
It can be treated as a simplified version of FPN. It will take the result from Darknet backbone and do some upsampling and concatenation. It will finally output the detection result.
Note
- The input feats should be from top to bottom.
i.e., from high-lvl to low-lvl
- But YOLOV3Neck will process them in reversed order.
i.e., from bottom (high-lvl) to top (low-lvl)
- Parameters
num_scales (int) – The number of scales / stages.
in_channels (List[int]) – The number of input channels per scale.
out_channels (List[int]) – The number of output channels per scale.
conv_cfg (dict, optional) – Config dict for convolution layer. Default: None.
norm_cfg (dict, optional) – Dictionary to construct and config norm layer. Default: dict(type=’BN’, requires_grad=True)
act_cfg (dict, optional) – Config dict for activation layer. Default: dict(type=’LeakyReLU’, negative_slope=0.1).
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None
- forward(feats=typing.Tuple[torch.Tensor]) Tuple[Tensor] [source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class mmdet.models.necks.YOLOXPAFPN(in_channels, out_channels, num_csp_blocks=3, use_depthwise=False, upsample_cfg={'mode': 'nearest', 'scale_factor': 2}, conv_cfg=None, norm_cfg={'eps': 0.001, 'momentum': 0.03, 'type': 'BN'}, act_cfg={'type': 'Swish'}, init_cfg={'a': 2.23606797749979, 'distribution': 'uniform', 'layer': 'Conv2d', 'mode': 'fan_in', 'nonlinearity': 'leaky_relu', 'type': 'Kaiming'})[source]¶
Path Aggregation Network used in YOLOX.
- Parameters
in_channels (List[int]) – Number of input channels per scale.
out_channels (int) – Number of output channels (used at each scale)
num_csp_blocks (int) – Number of bottlenecks in CSPLayer. Default: 3
use_depthwise (bool) – Whether to depthwise separable convolution in blocks. Default: False
upsample_cfg (dict) – Config dict for interpolate layer. Default: dict(scale_factor=2, mode=’nearest’)
conv_cfg (dict, optional) – Config dict for convolution layer. Default: None, which means using conv2d.
norm_cfg (dict) – Config dict for normalization layer. Default: dict(type=’BN’)
act_cfg (dict) – Config dict for activation layer. Default: dict(type=’Swish’)
init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None.
roi_heads¶
- class mmdet.models.roi_heads.BBoxHead(with_avg_pool: bool = False, with_cls: bool = True, with_reg: bool = True, roi_feat_size: int = 7, in_channels: int = 256, num_classes: int = 80, bbox_coder: Union[ConfigDict, dict] = {'clip_border': True, 'target_means': [0.0, 0.0, 0.0, 0.0], 'target_stds': [0.1, 0.1, 0.2, 0.2], 'type': 'DeltaXYWHBBoxCoder'}, predict_box_type: str = 'hbox', reg_class_agnostic: bool = False, reg_decoded_bbox: bool = False, reg_predictor_cfg: Union[ConfigDict, dict] = {'type': 'Linear'}, cls_predictor_cfg: Union[ConfigDict, dict] = {'type': 'Linear'}, loss_cls: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': False}, loss_bbox: Union[ConfigDict, dict] = {'beta': 1.0, 'loss_weight': 1.0, 'type': 'SmoothL1Loss'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Simplest RoI head, with only two fc layers for classification and regression respectively.
- property custom_accuracy: bool¶
Get custom_accuracy from loss_cls.
- property custom_activation: bool¶
Get custom_activation from loss_cls.
- property custom_cls_channels: bool¶
Get custom_cls_channels from loss_cls.
- forward(x: Tuple[Tensor]) tuple [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of classification scores and bbox prediction.
cls_score (Tensor): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_pred (Tensor): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
- Return type
tuple
- get_targets(sampling_results: List[SamplingResult], rcnn_train_cfg: ConfigDict, concat: bool = True) tuple [source]¶
Calculate the ground truth for all samples in a batch according to the sampling_results.
Almost the same as the implementation in bbox_head, we passed additional parameters pos_inds_list and neg_inds_list to _get_targets_single function.
- Parameters
(List[obj (sampling_results) – SamplingResult]): Assign results of all images in a batch after sampling.
(obj (rcnn_train_cfg) – ConfigDict): train_cfg of RCNN.
concat (bool) – Whether to concatenate the results of all the images in a single batch.
- Returns
Ground truth for proposals in a single image. Containing the following list of Tensors:
- labels (list[Tensor],Tensor): Gt_labels for all
proposals in a batch, each tensor in list has shape (num_proposals,) when concat=False, otherwise just a single tensor has shape (num_all_proposals,).
- label_weights (list[Tensor]): Labels_weights for
all proposals in a batch, each tensor in list has shape (num_proposals,) when concat=False, otherwise just a single tensor has shape (num_all_proposals,).
- bbox_targets (list[Tensor],Tensor): Regression target
for all proposals in a batch, each tensor in list has shape (num_proposals, 4) when concat=False, otherwise just a single tensor has shape (num_all_proposals, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
- bbox_weights (list[tensor],Tensor): Regression weights for
all proposals in a batch, each tensor in list has shape (num_proposals, 4) when concat=False, otherwise just a single tensor has shape (num_all_proposals, 4).
- Return type
Tuple[Tensor]
- loss(cls_score: Tensor, bbox_pred: Tensor, rois: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tensor, bbox_weights: Tensor, reduction_override: Optional[str] = None) dict [source]¶
Calculate the loss based on the network predictions and targets.
- Parameters
cls_score (Tensor) – Classification prediction results of all class, has shape (batch_size * num_proposals_single_image, num_classes)
bbox_pred (Tensor) – Regression prediction results, has shape (batch_size * num_proposals_single_image, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
rois (Tensor) – RoIs with the shape (batch_size * num_proposals_single_image, 5) where the first column indicates batch id of each RoI.
labels (Tensor) – Gt_labels for all proposals in a batch, has shape (batch_size * num_proposals_single_image, ).
label_weights (Tensor) – Labels_weights for all proposals in a batch, has shape (batch_size * num_proposals_single_image, ).
bbox_targets (Tensor) – Regression target for all proposals in a batch, has shape (batch_size * num_proposals_single_image, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
bbox_weights (Tensor) – Regression weights for all proposals in a batch, has shape (batch_size * num_proposals_single_image, 4).
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”. Defaults to None,
- Returns
A dictionary of loss.
- Return type
dict
- loss_and_target(cls_score: Tensor, bbox_pred: Tensor, rois: Tensor, sampling_results: List[SamplingResult], rcnn_train_cfg: ConfigDict, concat: bool = True, reduction_override: Optional[str] = None) dict [source]¶
Calculate the loss based on the features extracted by the bbox head.
- Parameters
cls_score (Tensor) – Classification prediction results of all class, has shape (batch_size * num_proposals_single_image, num_classes)
bbox_pred (Tensor) – Regression prediction results, has shape (batch_size * num_proposals_single_image, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
rois (Tensor) – RoIs with the shape (batch_size * num_proposals_single_image, 5) where the first column indicates batch id of each RoI.
(List[obj (sampling_results) – SamplingResult]): Assign results of all images in a batch after sampling.
(obj (rcnn_train_cfg) – ConfigDict): train_cfg of RCNN.
concat (bool) – Whether to concatenate the results of all the images in a single batch. Defaults to True.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”. Defaults to None,
- Returns
- A dictionary of loss and targets components.
The targets are only used for cascade rcnn.
- Return type
dict
- predict_by_feat(rois: Tuple[Tensor], cls_scores: Tuple[Tensor], bbox_preds: Tuple[Tensor], batch_img_metas: List[dict], rcnn_test_cfg: Optional[ConfigDict] = None, rescale: bool = False) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into bbox results.
- Parameters
rois (tuple[Tensor]) – Tuple of boxes to be transformed. Each has shape (num_boxes, 5). last dimension 5 arrange as (batch_index, x1, y1, x2, y2).
cls_scores (tuple[Tensor]) – Tuple of box scores, each has shape (num_boxes, num_classes + 1).
bbox_preds (tuple[Tensor]) – Tuple of box energies / deltas, each has shape (num_boxes, num_classes * 4).
batch_img_metas (list[dict]) – List of image information.
(obj (rcnn_test_cfg) – ConfigDict, optional): test_cfg of R-CNN. Defaults to None.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Instance segmentation results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- refine_bboxes(sampling_results: Union[List[SamplingResult], List[InstanceData]], bbox_results: dict, batch_img_metas: List[dict]) List[InstanceData] [source]¶
Refine bboxes during training.
- :param sampling_results (List[
SamplingResult
] or: List[InstanceData
]): Sampling results. SamplingResult
is the real sampling results calculate from bbox_head, whileInstanceData
is fake sampling results, e.g., in Sparse R-CNN or QueryInst, etc.
- Parameters
bbox_results (dict) –
Usually is a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
rois (Tensor): RoIs with the shape (n, 5) where the first column indicates batch id of each RoI.
bbox_targets (tuple): Ground truth for proposals in a single image. Containing the following list of Tensors: (labels, label_weights, bbox_targets, bbox_weights)
batch_img_metas (List[dict]) – List of image information.
- Returns
Refined bboxes of each image.
- Return type
list[
InstanceData
]
Example
>>> # xdoctest: +REQUIRES(module:kwarray) >>> import numpy as np >>> from mmdet.models.task_modules.samplers.sampling_result >>> import random_boxes >>> from mmdet.models.task_modules.samplers import SamplingResult >>> self = BBoxHead(reg_class_agnostic=True) >>> n_roi = 2 >>> n_img = 4 >>> scale = 512 >>> rng = np.random.RandomState(0) ... batch_img_metas = [{'img_shape': (scale, scale)} >>> for _ in range(n_img)] >>> sampling_results = [SamplingResult.random(rng=10) ... for _ in range(n_img)] >>> # Create rois in the expected format >>> roi_boxes = random_boxes(n_roi, scale=scale, rng=rng) >>> img_ids = torch.randint(0, n_img, (n_roi,)) >>> img_ids = img_ids.float() >>> rois = torch.cat([img_ids[:, None], roi_boxes], dim=1) >>> # Create other args >>> labels = torch.randint(0, 81, (scale,)).long() >>> bbox_preds = random_boxes(n_roi, scale=scale, rng=rng) >>> cls_score = torch.randn((scale, 81)) ... # For each image, pretend random positive boxes are gts >>> bbox_targets = (labels, None, None, None) ... bbox_results = dict(rois=rois, bbox_pred=bbox_preds, ... cls_score=cls_score, ... bbox_targets=bbox_targets) >>> bboxes_list = self.refine_bboxes(sampling_results, ... bbox_results, ... batch_img_metas) >>> print(bboxes_list)
- :param sampling_results (List[
- regress_by_class(priors: Tensor, label: Tensor, bbox_pred: Tensor, img_meta: dict) Tensor [source]¶
Regress the bbox for the predicted class. Used in Cascade R-CNN.
- Parameters
priors (Tensor) – Priors from rpn_head or last stage bbox_head, has shape (num_proposals, 4).
label (Tensor) – Only used when self.reg_class_agnostic is False, has shape (num_proposals, ).
bbox_pred (Tensor) – Regression prediction of current stage bbox_head. When self.reg_class_agnostic is False, it has shape (n, num_classes * 4), otherwise it has shape (n, 4).
img_meta (dict) – Image meta info.
- Returns
Regressed bboxes, the same shape as input rois.
- Return type
Tensor
- class mmdet.models.roi_heads.BaseRoIExtractor(roi_layer: Union[ConfigDict, dict], out_channels: int, featmap_strides: List[int], init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Base class for RoI extractor.
- Parameters
roi_layer (
ConfigDict
or dict) – Specify RoI layer type and arguments.out_channels (int) – Output channels of RoI layers.
featmap_strides (list[int]) – Strides of input feature maps.
init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict. Defaults to None.
- build_roi_layers(layer_cfg: Union[ConfigDict, dict], featmap_strides: List[int]) ModuleList [source]¶
Build RoI operator to extract feature from each level feature map.
- Parameters
layer_cfg (
ConfigDict
or dict) – Dictionary to construct and config RoI layer operation. Options are modules undermmcv/ops
such asRoIAlign
.featmap_strides (list[int]) – The stride of input feature map w.r.t to the original image size, which would be used to scale RoI coordinate (original image coordinate system) to feature coordinate system.
- Returns
- The RoI extractor modules for each level
feature map.
- Return type
nn.ModuleList
- abstract forward(feats: Tuple[Tensor], rois: Tensor, roi_scale_factor: Optional[float] = None) Tensor [source]¶
Extractor ROI feats.
- Parameters
feats (Tuple[Tensor]) – Multi-scale features.
rois (Tensor) – RoIs with the shape (n, 5) where the first column indicates batch id of each RoI.
roi_scale_factor (Optional[float]) – RoI scale factor. Defaults to None.
- Returns
RoI feature.
- Return type
Tensor
- property num_inputs: int¶
Number of input feature maps.
- Type
int
- class mmdet.models.roi_heads.BaseRoIHead(bbox_roi_extractor: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, bbox_head: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, mask_roi_extractor: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, mask_head: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, shared_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Base class for RoIHeads.
- abstract loss(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample])[source]¶
Perform forward propagation and loss calculation of the roi head on the features of the upstream network.
- predict(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the roi head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Features from upstream network. Each has shape (N, C, H, W).
rpn_results_list (list[
InstanceData
]) – list of region proposals.batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results to the original image. Defaults to True.
- Returns
InstanceData]: Detection results of each image. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[obj
- property with_bbox: bool¶
whether the RoI head contains a bbox_head
- Type
bool
- property with_mask: bool¶
whether the RoI head contains a mask_head
- Type
bool
whether the RoI head contains a shared_head
- Type
bool
- class mmdet.models.roi_heads.CascadeRoIHead(num_stages: int, stage_loss_weights: Union[List[float], Tuple[float]], bbox_roi_extractor: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, bbox_head: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, mask_roi_extractor: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, mask_head: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, shared_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Cascade roi head including one bbox head and one mask head.
https://arxiv.org/abs/1712.00726
- bbox_loss(stage: int, x: Tuple[Tensor], sampling_results: List[SamplingResult]) dict [source]¶
Run forward function and calculate loss for box head in training.
- Parameters
stage (int) – The current stage in Cascade RoI Head.
x (tuple[Tensor]) – List of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
- Returns
Usually returns a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
bbox_feats (Tensor): Extract bbox RoI features.
loss_bbox (dict): A dictionary of bbox loss components.
rois (Tensor): RoIs with the shape (n, 5) where the first column indicates batch id of each RoI.
bbox_targets (tuple): Ground truth for proposals in a single image. Containing the following list of Tensors: (labels, label_weights, bbox_targets, bbox_weights)
- Return type
dict
- forward(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) tuple [source]¶
Network forward process. Usually includes backbone, neck and head forward without any post-processing.
- Parameters
x (List[Tensor]) – Multi-level features that may have different resolutions.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – Each item contains the meta information of each image and corresponding annotations.
- Returns
tuple: A tuple of features from
bbox_head
andmask_head
forward.
- init_bbox_head(bbox_roi_extractor: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]], bbox_head: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]) None [source]¶
Initialize box head and box roi extractor.
- Parameters
bbox_roi_extractor (
ConfigDict
, dict or list) – Config of box roi extractor.bbox_head (
ConfigDict
, dict or list) – Config of box in box head.
- init_mask_head(mask_roi_extractor: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]], mask_head: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]) None [source]¶
Initialize mask head and mask roi extractor.
- Parameters
mask_head (dict) – Config of mask in mask head.
mask_roi_extractor (
ConfigDict
, dict or list) – Config of mask roi extractor.
- loss(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection roi on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict[str, Tensor]
- mask_loss(stage: int, x: Tuple[Tensor], sampling_results: List[SamplingResult], batch_gt_instances: List[InstanceData]) dict [source]¶
Run forward function and calculate loss for mask head in training.
- Parameters
stage (int) – The current stage in Cascade RoI Head.
x (tuple[Tensor]) – Tuple of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.
- Returns
Usually returns a dictionary with keys:
mask_preds (Tensor): Mask prediction.
loss_mask (dict): A dictionary of mask loss components.
- Return type
dict
- predict_bbox(x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: List[InstanceData], rcnn_test_cfg: Union[ConfigDict, dict], rescale: bool = False, **kwargs) List[InstanceData] [source]¶
Perform forward propagation of the bbox head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
rpn_results_list (list[
InstanceData
]) – List of region proposals.(obj (rcnn_test_cfg) – ConfigDict): test_cfg of R-CNN.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- predict_mask(x: Tuple[Tensor], batch_img_metas: List[dict], results_list: List[InstanceData], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the mask head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
results_list (list[
InstanceData
]) – Detection results of each image.rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.CoarseMaskHead(num_convs: int = 0, num_fcs: int = 2, fc_out_channels: int = 1024, downsample_factor: int = 2, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'override': [{'name': 'fcs'}, {'type': 'Constant', 'val': 0.001, 'name': 'fc_logits'}], 'type': 'Xavier'}, *arg, **kwarg)[source]¶
Coarse mask head used in PointRend.
Compared with standard
FCNMaskHead
,CoarseMaskHead
will downsample the input feature map instead of upsample it.- Parameters
num_convs (int) – Number of conv layers in the head. Defaults to 0.
num_fcs (int) – Number of fc layers in the head. Defaults to 2.
fc_out_channels (int) – Number of output channels of fc layer. Defaults to 1024.
downsample_factor (int) – The factor that feature map is downsampled by. Defaults to 2.
init_cfg (dict or list[dict], optional) – Initialization config dict.
- class mmdet.models.roi_heads.ConvFCBBoxHead(num_shared_convs: int = 0, num_shared_fcs: int = 0, num_cls_convs: int = 0, num_cls_fcs: int = 0, num_reg_convs: int = 0, num_reg_fcs: int = 0, conv_out_channels: int = 256, fc_out_channels: int = 1024, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict]] = None, *args, **kwargs)[source]¶
More general bbox head, with shared conv and fc layers and two optional separated branches.
/-> cls convs -> cls fcs -> cls shared convs -> shared fcs \-> reg convs -> reg fcs -> reg
- forward(x: Tuple[Tensor]) tuple [source]¶
Forward features from the upstream network.
- Parameters
x (tuple[Tensor]) – Features from the upstream network, each is a 4D-tensor.
- Returns
A tuple of classification scores and bbox prediction.
cls_score (Tensor): Classification scores for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * num_classes.
bbox_pred (Tensor): Box energies / deltas for all scale levels, each is a 4D-tensor, the channels number is num_base_priors * 4.
- Return type
tuple
- class mmdet.models.roi_heads.DIIHead(num_classes: int = 80, num_ffn_fcs: int = 2, num_heads: int = 8, num_cls_fcs: int = 1, num_reg_fcs: int = 3, feedforward_channels: int = 2048, in_channels: int = 256, dropout: float = 0.0, ffn_act_cfg: Union[ConfigDict, dict] = {'inplace': True, 'type': 'ReLU'}, dynamic_conv_cfg: Union[ConfigDict, dict] = {'act_cfg': {'inplace': True, 'type': 'ReLU'}, 'feat_channels': 64, 'in_channels': 256, 'input_feat_shape': 7, 'norm_cfg': {'type': 'LN'}, 'out_channels': 256, 'type': 'DynamicConv'}, loss_iou: Union[ConfigDict, dict] = {'loss_weight': 2.0, 'type': 'GIoULoss'}, init_cfg: Optional[Union[ConfigDict, dict]] = None, **kwargs)[source]¶
Dynamic Instance Interactive Head for Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
- Parameters
num_classes (int) – Number of class in dataset. Defaults to 80.
num_ffn_fcs (int) – The number of fully-connected layers in FFNs. Defaults to 2.
num_heads (int) – The hidden dimension of FFNs. Defaults to 8.
num_cls_fcs (int) – The number of fully-connected layers in classification subnet. Defaults to 1.
num_reg_fcs (int) – The number of fully-connected layers in regression subnet. Defaults to 3.
feedforward_channels (int) – The hidden dimension of FFNs. Defaults to 2048
in_channels (int) – Hidden_channels of MultiheadAttention. Defaults to 256.
dropout (float) – Probability of drop the channel. Defaults to 0.0
ffn_act_cfg (
ConfigDict
or dict) – The activation config for FFNs.dynamic_conv_cfg (
ConfigDict
or dict) – The convolution config for DynamicConv.loss_iou (
ConfigDict
or dict) – The config for iou or giou loss.
:param init_cfg (
ConfigDict
or dict or list[ConfigDict
or : dict]): Initialization config dict. Defaults to None.- forward(roi_feat: Tensor, proposal_feat: Tensor) tuple [source]¶
Forward function of Dynamic Instance Interactive Head.
- Parameters
roi_feat (Tensor) – Roi-pooling features with shape (batch_size*num_proposals, feature_dimensions, pooling_h , pooling_w).
proposal_feat (Tensor) – Intermediate feature get from diihead in last stage, has shape (batch_size, num_proposals, feature_dimensions)
- Returns
Usually a tuple of classification scores and bbox prediction and a intermediate feature.
cls_scores (Tensor): Classification scores for all proposals, has shape (batch_size, num_proposals, num_classes).
bbox_preds (Tensor): Box energies / deltas for all proposals, has shape (batch_size, num_proposals, 4).
obj_feat (Tensor): Object feature before classification and regression subnet, has shape (batch_size, num_proposal, feature_dimensions).
attn_feats (Tensor): Intermediate feature.
- Return type
tuple[Tensor]
- get_targets(sampling_results: List[SamplingResult], rcnn_train_cfg: ConfigDict, concat: bool = True) tuple [source]¶
Calculate the ground truth for all samples in a batch according to the sampling_results.
Almost the same as the implementation in bbox_head, we passed additional parameters pos_inds_list and neg_inds_list to _get_targets_single function.
- Parameters
(List[obj (sampling_results) – SamplingResult]): Assign results of all images in a batch after sampling.
(obj (rcnn_train_cfg) – ConfigDict): train_cfg of RCNN.
concat (bool) – Whether to concatenate the results of all the images in a single batch.
- Returns
Ground truth for proposals in a single image. Containing the following list of Tensors:
labels (list[Tensor],Tensor): Gt_labels for all proposals in a batch, each tensor in list has shape (num_proposals,) when concat=False, otherwise just a single tensor has shape (num_all_proposals,).
label_weights (list[Tensor]): Labels_weights for all proposals in a batch, each tensor in list has shape (num_proposals,) when concat=False, otherwise just a single tensor has shape (num_all_proposals,).
bbox_targets (list[Tensor],Tensor): Regression target for all proposals in a batch, each tensor in list has shape (num_proposals, 4) when concat=False, otherwise just a single tensor has shape (num_all_proposals, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
bbox_weights (list[tensor],Tensor): Regression weights for all proposals in a batch, each tensor in list has shape (num_proposals, 4) when concat=False, otherwise just a single tensor has shape (num_all_proposals, 4).
- Return type
Tuple[Tensor]
- init_weights() None [source]¶
Use xavier initialization for all weight parameter and set classification head bias as a specific value when use focal loss.
- loss_and_target(cls_score: Tensor, bbox_pred: Tensor, sampling_results: List[SamplingResult], rcnn_train_cfg: Union[ConfigDict, dict], imgs_whwh: Tensor, concat: bool = True, reduction_override: Optional[str] = None) dict [source]¶
Calculate the loss based on the features extracted by the DIIHead.
- Parameters
cls_score (Tensor) – Classification prediction results of all class, has shape (batch_size * num_proposals_single_image, num_classes)
bbox_pred (Tensor) – Regression prediction results, has shape (batch_size * num_proposals_single_image, 4), the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
(List[obj (sampling_results) – SamplingResult]): Assign results of all images in a batch after sampling.
(obj (rcnn_train_cfg) – ConfigDict): train_cfg of RCNN.
imgs_whwh (Tensor) – imgs_whwh (Tensor): Tensor with shape (batch_size, num_proposals, 4), the last dimension means [img_width,img_height, img_width, img_height].
concat (bool) – Whether to concatenate the results of all the images in a single batch. Defaults to True.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”. Defaults to None.
- Returns
A dictionary of loss and targets components. The targets are only used for cascade rcnn.
- Return type
dict
- class mmdet.models.roi_heads.DoubleConvFCBBoxHead(num_convs: int = 0, num_fcs: int = 0, conv_out_channels: int = 1024, fc_out_channels: int = 1024, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'type': 'BN'}, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'override': [{'type': 'Normal', 'name': 'fc_cls', 'std': 0.01}, {'type': 'Normal', 'name': 'fc_reg', 'std': 0.001}, {'type': 'Xavier', 'name': 'fc_branch', 'distribution': 'uniform'}], 'type': 'Normal'}, **kwargs)[source]¶
Bbox head used in Double-Head R-CNN.
/-> cls /-> shared convs -> \-> reg roi features /-> cls \-> shared fc -> \-> reg
- forward(x_cls: Tensor, x_reg: Tensor) Tuple[Tensor] [source]¶
Forward features from the upstream network.
- Parameters
x_cls (Tensor) – Classification features of rois
x_reg (Tensor) – Regression features from the upstream network.
- Returns
A tuple of classification scores and bbox prediction.
cls_score (Tensor): Classification score predictions of rois. each roi predicts num_classes + 1 channels.
bbox_pred (Tensor): BBox deltas predictions of rois. each roi predicts 4 * num_classes channels.
- Return type
tuple
- class mmdet.models.roi_heads.DoubleHeadRoIHead(reg_roi_scale_factor: float, **kwargs)[source]¶
RoI head for Double Head RCNN.
- Parameters
reg_roi_scale_factor (float) – The scale factor to extend the rois used to extract the regression features.
- class mmdet.models.roi_heads.DynamicRoIHead(**kwargs)[source]¶
RoI head for Dynamic R-CNN.
- bbox_loss(x: Tuple[Tensor], sampling_results: List[SamplingResult]) dict [source]¶
Perform forward propagation and loss calculation of the bbox head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
- Returns
Usually returns a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
bbox_feats (Tensor): Extract bbox RoI features.
loss_bbox (dict): A dictionary of bbox loss components.
- Return type
dict[str, Tensor]
- loss(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) dict [source]¶
Forward function for training.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
a dictionary of loss components
- Return type
dict[str, Tensor]
- class mmdet.models.roi_heads.FCNMaskHead(num_convs: int = 4, roi_feat_size: int = 14, in_channels: int = 256, conv_kernel_size: int = 3, conv_out_channels: int = 256, num_classes: int = 80, class_agnostic: int = False, upsample_cfg: Union[ConfigDict, dict] = {'scale_factor': 2, 'type': 'deconv'}, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, predictor_cfg: Union[ConfigDict, dict] = {'type': 'Conv'}, loss_mask: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_mask': True}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
- forward(x: Tensor) Tensor [source]¶
Forward features from the upstream network.
- Parameters
x (Tensor) – Extract mask RoI features.
- Returns
Predicted foreground masks.
- Return type
Tensor
- get_targets(sampling_results: List[SamplingResult], batch_gt_instances: List[InstanceData], rcnn_train_cfg: ConfigDict) Tensor [source]¶
Calculate the ground truth for all samples in a batch according to the sampling_results.
- Parameters
(List[obj (sampling_results) – SamplingResult]): Assign results of all images in a batch after sampling.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.(obj (rcnn_train_cfg) – ConfigDict): train_cfg of RCNN.
- Returns
Mask target of each positive proposals in the image.
- Return type
Tensor
- loss_and_target(mask_preds: Tensor, sampling_results: List[SamplingResult], batch_gt_instances: List[InstanceData], rcnn_train_cfg: ConfigDict) dict [source]¶
Calculate the loss based on the features extracted by the mask head.
- Parameters
mask_preds (Tensor) – Predicted foreground masks, has shape (num_pos, num_classes, h, w).
(List[obj (sampling_results) – SamplingResult]): Assign results of all images in a batch after sampling.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.(obj (rcnn_train_cfg) – ConfigDict): train_cfg of RCNN.
- Returns
A dictionary of loss and targets components.
- Return type
dict
- predict_by_feat(mask_preds: Tuple[Tensor], results_list: List[InstanceData], batch_img_metas: List[dict], rcnn_test_cfg: ConfigDict, rescale: bool = False, activate_map: bool = False) List[InstanceData] [source]¶
Transform a batch of output features extracted from the head into mask results.
- Parameters
mask_preds (tuple[Tensor]) – Tuple of predicted foreground masks, each has shape (n, num_classes, h, w).
results_list (list[
InstanceData
]) – Detection results of each image.batch_img_metas (list[dict]) – List of image information.
(obj (rcnn_test_cfg) – ConfigDict): test_cfg of Bbox Head.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
activate_map (book) – Whether get results with augmentations test. If True, the mask_preds will not process with sigmoid. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.FeatureRelayHead(in_channels: int = 1024, out_conv_channels: int = 256, roi_feat_size: int = 7, scale_factor: int = 2, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'layer': 'Linear', 'type': 'Kaiming'})[source]¶
Feature Relay Head used in SCNet.
- Parameters
in_channels (int) – number of input channels. Defaults to 256.
conv_out_channels (int) – number of output channels before classification layer. Defaults to 256.
roi_feat_size (int) – roi feat size at box head. Default: 7.
scale_factor (int) – scale factor to match roi feat size at mask head. Defaults to 2.
- :param init_cfg (
ConfigDict
or dict or list[dict] or: list[ConfigDict
]): Initialization config dict. Defaults to dict(type=’Kaiming’, layer=’Linear’).
- class mmdet.models.roi_heads.FusedSemanticHead(num_ins: int, fusion_level: int, seg_scale_factor=0.125, num_convs: int = 4, in_channels: int = 256, conv_out_channels: int = 256, num_classes: int = 183, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, ignore_label: Optional[int] = None, loss_weight: Optional[float] = None, loss_seg: ConfigDict = {'ignore_index': 255, 'loss_weight': 0.2, 'type': 'CrossEntropyLoss'}, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'override': {'name': 'conv_logits'}, 'type': 'Kaiming'})[source]¶
Multi-level fused semantic segmentation head.
in_1 -> 1x1 conv --- | in_2 -> 1x1 conv -- | || in_3 -> 1x1 conv - || ||| /-> 1x1 conv (mask prediction) in_4 -> 1x1 conv -----> 3x3 convs (*4) | \-> 1x1 conv (feature) in_5 -> 1x1 conv ---
- class mmdet.models.roi_heads.GenericRoIExtractor(aggregation: str = 'sum', pre_cfg: Optional[Union[ConfigDict, dict]] = None, post_cfg: Optional[Union[ConfigDict, dict]] = None, **kwargs)[source]¶
Extract RoI features from all level feature maps levels.
This is the implementation of A novel Region of Interest Extraction Layer for Instance Segmentation.
- Parameters
aggregation (str) – The method to aggregate multiple feature maps. Options are ‘sum’, ‘concat’. Defaults to ‘sum’.
pre_cfg (
ConfigDict
or dict) – Specify pre-processing modules. Defaults to None.post_cfg (
ConfigDict
or dict) – Specify post-processing modules. Defaults to None.kwargs (keyword arguments) – Arguments that are the same as
BaseRoIExtractor
.
- forward(feats: Tuple[Tensor], rois: Tensor, roi_scale_factor: Optional[float] = None) Tensor [source]¶
Extractor ROI feats.
- Parameters
feats (Tuple[Tensor]) – Multi-scale features.
rois (Tensor) – RoIs with the shape (n, 5) where the first column indicates batch id of each RoI.
roi_scale_factor (Optional[float]) – RoI scale factor. Defaults to None.
- Returns
RoI feature.
- Return type
Tensor
- class mmdet.models.roi_heads.GlobalContextHead(num_convs: int = 4, in_channels: int = 256, conv_out_channels: int = 256, num_classes: int = 80, loss_weight: float = 1.0, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, conv_to_res: bool = False, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'override': {'name': 'fc'}, 'std': 0.01, 'type': 'Normal'})[source]¶
Global context head used in SCNet.
- Parameters
num_convs (int, optional) – number of convolutional layer in GlbCtxHead. Defaults to 4.
in_channels (int, optional) – number of input channels. Defaults to 256.
conv_out_channels (int, optional) – number of output channels before classification layer. Defaults to 256.
num_classes (int, optional) – number of classes. Defaults to 80.
loss_weight (float, optional) – global context loss weight. Defaults to 1.
conv_cfg (dict, optional) – config to init conv layer. Defaults to None.
norm_cfg (dict, optional) – config to init norm layer. Defaults to None.
conv_to_res (bool, optional) – if True, 2 convs will be grouped into 1 SimplifiedBasicBlock using a skip connection. Defaults to False.
- :param init_cfg (
ConfigDict
or dict or list[dict] or: list[ConfigDict
]): Initialization config dict. Defaults to dict(type=’Normal’, std=0.01, override=dict(name=’fc’)).
- class mmdet.models.roi_heads.GridHead(grid_points: int = 9, num_convs: int = 8, roi_feat_size: int = 14, in_channels: int = 256, conv_kernel_size: int = 3, point_feat_channels: int = 64, deconv_kernel_size: int = 4, class_agnostic: bool = False, loss_grid: Union[ConfigDict, dict] = {'loss_weight': 15, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Union[ConfigDict, dict] = {'num_groups': 36, 'type': 'GN'}, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = [{'type': 'Kaiming', 'layer': ['Conv2d', 'Linear']}, {'type': 'Normal', 'layer': 'ConvTranspose2d', 'std': 0.001, 'override': {'type': 'Normal', 'name': 'deconv2', 'std': 0.001, 'bias': -4.59511985013459}}])[source]¶
Implementation of Grid Head
- Parameters
grid_points (int) – The number of grid points. Defaults to 9.
num_convs (int) – The number of convolution layers. Defaults to 8.
roi_feat_size (int) – RoI feature size. Default to 14.
in_channels (int) – The channel number of inputs features. Defaults to 256.
conv_kernel_size (int) – The kernel size of convolution layers. Defaults to 3.
point_feat_channels (int) – The number of channels of each point features. Defaults to 64.
class_agnostic (bool) – Whether use class agnostic classification. If so, the output channels of logits will be 1. Defaults to False.
loss_grid (
ConfigDict
or dict) – Config of grid loss.conv_cfg (
ConfigDict
or dict, optional) – construct and config conv layer.norm_cfg (
ConfigDict
or dict) – dictionary to construct and config norm layer.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict]) – Initialization config dict.
- calc_sub_regions() List[Tuple[float]] [source]¶
Compute point specific representation regions.
See Grid R-CNN Plus for details.
- forward(x: Tensor) Dict[str, Tensor] [source]¶
Forward function of
GridHead
.- Parameters
x (Tensor) – RoI features, has shape (num_rois, num_channels, roi_feat_size, roi_feat_size).
- Returns
Return a dict including fused and unfused heatmap.
- Return type
Dict[str, Tensor]
- get_targets(sampling_results: List[SamplingResult], rcnn_train_cfg: ConfigDict) Tensor [source]¶
Calculate the ground truth for all samples in a batch according to the sampling_results.”.
- Parameters
sampling_results (List[
SamplingResult
]) – Assign results of all images in a batch after sampling.rcnn_train_cfg (
ConfigDict
) – train_cfg of RCNN.
- Returns
Grid heatmap targets.
- Return type
Tensor
- loss(grid_pred: Tensor, sample_idx: Tensor, sampling_results: List[SamplingResult], rcnn_train_cfg: ConfigDict) dict [source]¶
Calculate the loss based on the features extracted by the grid head.
- Parameters
grid_pred (dict[str, Tensor]) – Outputs of grid_head forward.
sample_idx (Tensor) – The sampling index of
grid_pred
.(List[obj (sampling_results) – SamplingResult]): Assign results of all images in a batch after sampling.
(obj (rcnn_train_cfg) – ConfigDict): train_cfg of RCNN.
- Returns
A dictionary of loss and targets components.
- Return type
dict
- predict_by_feat(grid_preds: Dict[str, Tensor], results_list: List[InstanceData], batch_img_metas: List[dict], rescale: bool = False) List[InstanceData] [source]¶
Adjust the predicted bboxes from bbox head.
- Parameters
grid_preds (dict[str, Tensor]) – dictionary outputted by forward function.
results_list (list[
InstanceData
]) – Detection results of each image.batch_img_metas (list[dict]) – List of image information.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.GridRoIHead(grid_roi_extractor: Union[ConfigDict, dict], grid_head: Union[ConfigDict, dict], **kwargs)[source]¶
Implementation of Grid RoI Head
- Parameters
grid_roi_extractor (
ConfigDict
or dict) – Config of roi extractor.grid_head (
ConfigDict
or dict) – Config of grid head
- bbox_loss(x: Tuple[Tensor], sampling_results: List[SamplingResult], batch_img_metas: Optional[List[dict]] = None) dict [source]¶
Perform forward propagation and loss calculation of the bbox head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
sampling_results (list[
SamplingResult
]) – Sampling results.batch_img_metas (list[dict], optional) – Meta information of each image, e.g., image size, scaling factor, etc.
- Returns
Usually returns a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
bbox_feats (Tensor): Extract bbox RoI features.
loss_bbox (dict): A dictionary of bbox loss components.
- Return type
dict[str, Tensor]
- forward(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: Optional[List[DetDataSample]] = None) tuple [source]¶
Network forward process. Usually includes backbone, neck and head forward without any post-processing.
- Parameters
x (Tuple[Tensor]) – Multi-level features that may have different resolutions.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – Each item containscorresponding (the meta information of each image and) –
annotations. –
- Returns
tuple: A tuple of features from
bbox_head
andmask_head
forward.
- loss(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample], **kwargs) dict [source]¶
Perform forward propagation and loss calculation of the detection roi on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict[str, Tensor]
- predict_bbox(x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: List[InstanceData], rcnn_test_cfg: Union[ConfigDict, dict], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the bbox head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
rpn_results_list (list[
InstanceData
]) – List of region proposals.rcnn_test_cfg (
ConfigDict
) – test_cfg of R-CNN.rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.HTCMaskHead(with_conv_res: bool = True, *args, **kwargs)[source]¶
Mask head for HTC.
- Parameters
with_conv_res (bool) – Whether add conv layer for
res_feat
. Defaults to True.
- forward(x: Tensor, res_feat: Optional[Tensor] = None, return_logits: bool = True, return_feat: bool = True) Union[Tensor, List[Tensor]] [source]¶
- Parameters
x (Tensor) – Feature map.
res_feat (Tensor, optional) – Feature for residual connection. Defaults to None.
return_logits (bool) – Whether return mask logits. Defaults to True.
return_feat (bool) – Whether return feature map. Defaults to True.
- Returns
- The return result is one of three
results: res_feat, logits, or [logits, res_feat].
- Return type
Union[Tensor, List[Tensor]]
- class mmdet.models.roi_heads.HybridTaskCascadeRoIHead(num_stages: int, stage_loss_weights: List[float], semantic_roi_extractor: Optional[Union[ConfigDict, dict]] = None, semantic_head: Optional[Union[ConfigDict, dict]] = None, semantic_fusion: Tuple[str] = ('bbox', 'mask'), interleaved: bool = True, mask_info_flow: bool = True, **kwargs)[source]¶
Hybrid task cascade roi head including one bbox head and one mask head.
https://arxiv.org/abs/1901.07518
- Parameters
num_stages (int) – Number of cascade stages.
stage_loss_weights (list[float]) – Loss weight for every stage.
semantic_roi_extractor (
ConfigDict
or dict, optional) – Config of semantic roi extractor. Defaults to None.Semantic_head (
ConfigDict
or dict, optional) – Config of semantic head. Defaults to None.interleaved (bool) – Whether to interleaves the box branch and mask branch. If True, the mask branch can take the refined bounding box predictions. Defaults to True.
mask_info_flow (bool) – Whether to turn on the mask information flow, which means that feeding the mask features of the preceding stage to the current stage. Defaults to True.
- bbox_loss(stage: int, x: Tuple[Tensor], sampling_results: List[SamplingResult], semantic_feat: Optional[Tensor] = None) dict [source]¶
Run forward function and calculate loss for box head in training.
- Parameters
stage (int) – The current stage in Cascade RoI Head.
x (tuple[Tensor]) – List of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
semantic_feat (Tensor, optional) – Semantic feature. Defaults to None.
- Returns
Usually returns a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
bbox_feats (Tensor): Extract bbox RoI features.
loss_bbox (dict): A dictionary of bbox loss components.
rois (Tensor): RoIs with the shape (n, 5) where the first column indicates batch id of each RoI.
bbox_targets (tuple): Ground truth for proposals in a single image. Containing the following list of Tensors: (labels, label_weights, bbox_targets, bbox_weights)
- Return type
dict
- forward(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) tuple [source]¶
Network forward process. Usually includes backbone, neck and head forward without any post-processing.
- Parameters
x (List[Tensor]) – Multi-level features that may have different resolutions.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – Each item contains the meta information of each image and corresponding annotations.
- Returns
tuple: A tuple of features from
bbox_head
andmask_head
forward.
- loss(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection roi on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict[str, Tensor]
- mask_loss(stage: int, x: Tuple[Tensor], sampling_results: List[SamplingResult], batch_gt_instances: List[InstanceData], semantic_feat: Optional[Tensor] = None) dict [source]¶
Run forward function and calculate loss for mask head in training.
- Parameters
stage (int) – The current stage in Cascade RoI Head.
x (tuple[Tensor]) – Tuple of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.semantic_feat (Tensor, optional) – Semantic feature. Defaults to None.
- Returns
Usually returns a dictionary with keys:
mask_preds (Tensor): Mask prediction.
loss_mask (dict): A dictionary of mask loss components.
- Return type
dict
- predict(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the roi head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Features from upstream network. Each has shape (N, C, H, W).
rpn_results_list (list[
InstanceData
]) – list of region proposals.batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results to the original image. Defaults to False.
- Returns
InstanceData]: Detection results of each image. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[obj
- predict_mask(x: Tuple[Tensor], semantic_heat: Tensor, batch_img_metas: List[dict], results_list: List[InstanceData], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the mask head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
semantic_feat (Tensor) – Semantic feature.
batch_img_metas (list[dict]) – List of image information.
results_list (list[
InstanceData
]) – Detection results of each image.rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
InstanceData
]
- property with_semantic: bool¶
whether the head has semantic head
- Type
bool
- class mmdet.models.roi_heads.MaskIoUHead(num_convs: int = 4, num_fcs: int = 2, roi_feat_size: int = 14, in_channels: int = 256, conv_out_channels: int = 256, fc_out_channels: int = 1024, num_classes: int = 80, loss_iou: Union[ConfigDict, dict] = {'loss_weight': 0.5, 'type': 'MSELoss'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = [{'type': 'Kaiming', 'override': {'name': 'convs'}}, {'type': 'Caffe2Xavier', 'override': {'name': 'fcs'}}, {'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_mask_iou'}}])[source]¶
Mask IoU Head.
This head predicts the IoU of predicted masks and corresponding gt masks.
- Parameters
num_convs (int) – The number of convolution layers. Defaults to 4.
num_fcs (int) – The number of fully connected layers. Defaults to 2.
roi_feat_size (int) – RoI feature size. Default to 14.
in_channels (int) – The channel number of inputs features. Defaults to 256.
conv_out_channels (int) – The feature channels of convolution layers. Defaults to 256.
fc_out_channels (int) – The feature channels of fully connected layers. Defaults to 1024.
num_classes (int) – Number of categories excluding the background category. Defaults to 80.
loss_iou (
ConfigDict
or dict) – IoU loss.init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict.
- forward(mask_feat: Tensor, mask_preds: Tensor) Tensor [source]¶
Forward function.
- Parameters
mask_feat (Tensor) – Mask features from upstream models.
mask_preds (Tensor) – Mask predictions from mask head.
- Returns
Mask IoU predictions.
- Return type
Tensor
- get_targets(sampling_results: List[SamplingResult], batch_gt_instances: List[InstanceData], mask_preds: Tensor, mask_targets: Tensor, rcnn_train_cfg: ConfigDict) Tensor [source]¶
Compute target of mask IoU.
Mask IoU target is the IoU of the predicted mask (inside a bbox) and the gt mask of corresponding gt mask (the whole instance). The intersection area is computed inside the bbox, and the gt mask area is computed with two steps, firstly we compute the gt area inside the bbox, then divide it by the area ratio of gt area inside the bbox and the gt area of the whole instance.
- Parameters
sampling_results (list[
SamplingResult
]) – sampling results.batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It includesmasks
inside.mask_preds (Tensor) – Predicted masks of each positive proposal, shape (num_pos, h, w).
mask_targets (Tensor) – Gt mask of each positive proposal, binary map of the shape (num_pos, h, w).
(obj (rcnn_train_cfg) – ConfigDict): Training config for R-CNN part.
- Returns
mask iou target (length == num positive).
- Return type
Tensor
- loss_and_target(mask_iou_pred: Tensor, mask_preds: Tensor, mask_targets: Tensor, sampling_results: List[SamplingResult], batch_gt_instances: List[InstanceData], rcnn_train_cfg: ConfigDict) dict [source]¶
Calculate the loss and targets of MaskIoUHead.
- Parameters
mask_iou_pred (Tensor) – Mask IoU predictions results, has shape (num_pos, num_classes)
mask_preds (Tensor) – Mask predictions from mask head, has shape (num_pos, mask_size, mask_size).
mask_targets (Tensor) – The ground truth masks assigned with predictions, has shape (num_pos, mask_size, mask_size).
(List[obj (sampling_results) – SamplingResult]): Assign results of all images in a batch after sampling.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It includesmasks
inside.(obj (rcnn_train_cfg) – ConfigDict): train_cfg of RCNN.
- Returns
- A dictionary of loss and targets components.
The targets are only used for cascade rcnn.
- Return type
dict
- predict_by_feat(mask_iou_preds: Tuple[Tensor], results_list: List[InstanceData]) List[InstanceData] [source]¶
Predict the mask iou and calculate it into
results.scores
.- Parameters
mask_iou_preds (Tensor) – Mask IoU predictions results, has shape (num_proposals, num_classes)
results_list (list[
InstanceData
]) – Detection results of each image.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.MaskPointHead(num_classes: int, num_fcs: int = 3, in_channels: int = 256, fc_channels: int = 256, class_agnostic: bool = False, coarse_pred_each_layer: bool = True, conv_cfg: Union[ConfigDict, dict] = {'type': 'Conv1d'}, norm_cfg: Optional[Union[ConfigDict, dict]] = None, act_cfg: Union[ConfigDict, dict] = {'type': 'ReLU'}, loss_point: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_mask': True}, init_cfg: Union[ConfigDict, dict, List[Union[ConfigDict, dict]]] = {'override': {'name': 'fc_logits'}, 'std': 0.001, 'type': 'Normal'})[source]¶
A mask point head use in PointRend.
MaskPointHead
use shared multi-layer perceptron (equivalent to nn.Conv1d) to predict the logit of input points. The fine-grained feature and coarse feature will be concatenate together for predication.- Parameters
num_fcs (int) – Number of fc layers in the head. Defaults to 3.
in_channels (int) – Number of input channels. Defaults to 256.
fc_channels (int) – Number of fc channels. Defaults to 256.
num_classes (int) – Number of classes for logits. Defaults to 80.
class_agnostic (bool) – Whether use class agnostic classification. If so, the output channels of logits will be 1. Defaults to False.
coarse_pred_each_layer (bool) – Whether concatenate coarse feature with the output of each fc layer. Defaults to True.
conv_cfg (
ConfigDict
or dict) – Dictionary to construct and config conv layer. Defaults to dict(type=’Conv1d’)).norm_cfg (
ConfigDict
or dict, optional) – Dictionary to construct and config norm layer. Defaults to None.loss_point (
ConfigDict
or dict) – Dictionary to construct and config loss layer of point head. Defaults to dict(type=’CrossEntropyLoss’, use_mask=True, loss_weight=1.0).init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict.
- forward(fine_grained_feats: Tensor, coarse_feats: Tensor) Tensor [source]¶
Classify each point base on fine grained and coarse feats.
- Parameters
fine_grained_feats (Tensor) – Fine grained feature sampled from FPN, shape (num_rois, in_channels, num_points).
coarse_feats (Tensor) – Coarse feature sampled from CoarseMaskHead, shape (num_rois, num_classes, num_points).
- Returns
Point classification results, shape (num_rois, num_class, num_points).
- Return type
Tensor
- get_roi_rel_points_test(mask_preds: Tensor, label_preds: Tensor, cfg: Union[ConfigDict, dict]) Tuple[Tensor, Tensor] [source]¶
Get
num_points
most uncertain points during test.- Parameters
mask_preds (Tensor) – A tensor of shape (num_rois, num_classes, mask_height, mask_width) for class-specific or class-agnostic prediction.
label_preds (Tensor) – The predication class for each instance.
cfg (
ConfigDict
or dict) – Testing config of point head.
- Returns
point_indices (Tensor): A tensor of shape (num_rois, num_points) that contains indices from [0, mask_height x mask_width) of the most uncertain points.
point_coords (Tensor): A tensor of shape (num_rois, num_points, 2) that contains [0, 1] x [0, 1] normalized coordinates of the most uncertain points from the [mask_height, mask_width] grid.
- Return type
tuple
- get_roi_rel_points_train(mask_preds: Tensor, labels: Tensor, cfg: Union[ConfigDict, dict]) Tensor [source]¶
Get
num_points
most uncertain points with random points during train.Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The uncertainties are calculated for each point using ‘_get_uncertainty()’ function that takes point’s logit prediction as input.
- Parameters
mask_preds (Tensor) – A tensor of shape (num_rois, num_classes, mask_height, mask_width) for class-specific or class-agnostic prediction.
labels (Tensor) – The ground truth class for each instance.
cfg (
ConfigDict
or dict) – Training config of point head.
- Returns
A tensor of shape (num_rois, num_points, 2) that contains the coordinates sampled points.
- Return type
point_coords (Tensor)
- get_targets(rois: Tensor, rel_roi_points: Tensor, sampling_results: List[SamplingResult], batch_gt_instances: List[InstanceData], cfg: Union[ConfigDict, dict]) Tensor [source]¶
Get training targets of MaskPointHead for all images.
- Parameters
rois (Tensor) – Region of Interest, shape (num_rois, 5).
rel_roi_points (Tensor) – Points coordinates relative to RoI, shape (num_rois, num_points, 2).
sampling_results (
SamplingResult
) – Sampling result after sampling and assignment.batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.(obj (cfg) – ConfigDict or dict): Training cfg.
- Returns
Point target, shape (num_rois, num_points).
- Return type
Tensor
- loss_and_target(point_pred: Tensor, rel_roi_points: Tensor, sampling_results: List[SamplingResult], batch_gt_instances: List[InstanceData], cfg: Union[ConfigDict, dict]) dict [source]¶
Calculate loss for MaskPointHead.
- Parameters
point_pred (Tensor) – Point predication result, shape (num_rois, num_classes, num_points).
rel_roi_points (Tensor) –
- Points coordinates relative to RoI, shape
(num_rois, num_points, 2).
- sampling_results (
SamplingResult
): Sampling result after sampling and assignment.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.(obj (cfg) – ConfigDict or dict): Training cfg.
- Returns
a dictionary of point loss and point target.
- Return type
dict
- class mmdet.models.roi_heads.MaskScoringRoIHead(mask_iou_head: Union[ConfigDict, dict], **kwargs)[source]¶
Mask Scoring RoIHead for `Mask Scoring RCNN.
<https://arxiv.org/abs/1903.00241>`_.
- Parameters
( (mask_iou_head) – obj`ConfigDict`, dict): The config of mask_iou_head.
- forward(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: Optional[List[DetDataSample]] = None) tuple [source]¶
Network forward process. Usually includes backbone, neck and head forward without any post-processing.
- Parameters
x (List[Tensor]) – Multi-level features that may have different resolutions.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – Each item containscorresponding (the meta information of each image and) –
annotations. –
- Returns
tuple: A tuple of features from
bbox_head
andmask_head
forward.
- mask_loss(x: Tuple[Tensor], sampling_results: List[SamplingResult], bbox_feats, batch_gt_instances: List[InstanceData]) dict [source]¶
Perform forward propagation and loss calculation of the mask head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Tuple of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
bbox_feats (Tensor) – Extract bbox RoI features.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.
- Returns
Usually returns a dictionary with keys:
mask_preds (Tensor): Mask prediction.
mask_feats (Tensor): Extract mask RoI features.
mask_targets (Tensor): Mask target of each positive proposals in the image.
loss_mask (dict): A dictionary of mask loss components.
loss_mask_iou (Tensor): mask iou loss.
- Return type
dict
- predict_mask(x: Tensor, batch_img_metas: List[dict], results_list: List[InstanceData], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the mask head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
results_list (list[
InstanceData
]) – Detection results of each image.rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.MultiInstanceRoIHead(num_instance: int = 2, *args, **kwargs)[source]¶
The roi head for Multi-instance prediction.
- bbox_loss(x: Tuple[Tensor], sampling_results: List[SamplingResult]) dict [source]¶
Perform forward propagation and loss calculation of the bbox head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
- Returns
Usually returns a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
bbox_feats (Tensor): Extract bbox RoI features.
loss_bbox (dict): A dictionary of bbox loss components.
- Return type
dict[str, Tensor]
- init_bbox_head(bbox_roi_extractor: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict]) None [source]¶
Initialize box head and box roi extractor.
- Parameters
bbox_roi_extractor (dict or ConfigDict) – Config of box roi extractor.
bbox_head (dict or ConfigDict) – Config of box in box head.
- loss(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection roi on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict[str, Tensor]
- predict_bbox(x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: List[InstanceData], rcnn_test_cfg: Union[ConfigDict, dict], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the bbox head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
rpn_results_list (list[
InstanceData
]) – List of region proposals.(obj (rcnn_test_cfg) – ConfigDict): test_cfg of R-CNN.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.PISARoIHead(bbox_roi_extractor: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, bbox_head: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, mask_roi_extractor: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, mask_head: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, shared_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
The RoI head for Prime Sample Attention in Object Detection.
- bbox_loss(x: Tuple[Tensor], sampling_results: List[SamplingResult], neg_label_weights: Optional[List[Tensor]] = None) dict [source]¶
Perform forward propagation and loss calculation of the bbox head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
- Returns
Usually returns a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
bbox_feats (Tensor): Extract bbox RoI features.
loss_bbox (dict): A dictionary of bbox loss components.
- Return type
dict[str, Tensor]
- loss(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection roi on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict[str, Tensor]
- class mmdet.models.roi_heads.PointRendRoIHead(point_head: Union[ConfigDict, dict], *args, **kwargs)[source]¶
-
- mask_loss(x: Tuple[Tensor], sampling_results: List[SamplingResult], bbox_feats: Tensor, batch_gt_instances: List[InstanceData]) dict [source]¶
Run forward function and calculate loss for mask head and point head in training.
- predict_mask(x: Tuple[Tensor], batch_img_metas: List[dict], results_list: List[InstanceData], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the mask head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
results_list (list[
InstanceData
]) – Detection results of each image.rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.ResLayer(depth, stage=3, stride=2, dilation=1, style='pytorch', norm_cfg={'requires_grad': True, 'type': 'BN'}, norm_eval=True, with_cp=False, dcn=None, pretrained=None, init_cfg=None)[source]¶
- forward(x)[source]¶
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- train(mode=True)[source]¶
Set the module in training mode.
This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g.
Dropout
,BatchNorm
, etc.- Parameters
mode (bool) – whether to set training mode (
True
) or evaluation mode (False
). Default:True
.- Returns
self
- Return type
Module
- class mmdet.models.roi_heads.SABLHead(num_classes: int, cls_in_channels: int = 256, reg_in_channels: int = 256, roi_feat_size: int = 7, reg_feat_up_ratio: int = 2, reg_pre_kernel: int = 3, reg_post_kernel: int = 3, reg_pre_num: int = 2, reg_post_num: int = 1, cls_out_channels: int = 1024, reg_offset_out_channels: int = 256, reg_cls_out_channels: int = 256, num_cls_fcs: int = 1, num_reg_fcs: int = 0, reg_class_agnostic: bool = True, norm_cfg: Optional[Union[ConfigDict, dict]] = None, bbox_coder: Union[ConfigDict, dict] = {'num_buckets': 14, 'scale_factor': 1.7, 'type': 'BucketingBBoxCoder'}, loss_cls: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': False}, loss_bbox_cls: Union[ConfigDict, dict] = {'loss_weight': 1.0, 'type': 'CrossEntropyLoss', 'use_sigmoid': True}, loss_bbox_reg: Union[ConfigDict, dict] = {'beta': 0.1, 'loss_weight': 1.0, 'type': 'SmoothL1Loss'}, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Side-Aware Boundary Localization (SABL) for RoI-Head.
Side-Aware features are extracted by conv layers with an attention mechanism. Boundary Localization with Bucketing and Bucketing Guided Rescoring are implemented in BucketingBBoxCoder.
Please refer to https://arxiv.org/abs/1912.04260 for more details.
- Parameters
cls_in_channels (int) – Input channels of cls RoI feature. Defaults to 256.
reg_in_channels (int) – Input channels of reg RoI feature. Defaults to 256.
roi_feat_size (int) – Size of RoI features. Defaults to 7.
reg_feat_up_ratio (int) – Upsample ratio of reg features. Defaults to 2.
reg_pre_kernel (int) – Kernel of 2D conv layers before attention pooling. Defaults to 3.
reg_post_kernel (int) – Kernel of 1D conv layers after attention pooling. Defaults to 3.
reg_pre_num (int) – Number of pre convs. Defaults to 2.
reg_post_num (int) – Number of post convs. Defaults to 1.
num_classes (int) – Number of classes in dataset. Defaults to 80.
cls_out_channels (int) – Hidden channels in cls fcs. Defaults to 1024.
reg_offset_out_channels (int) – Hidden and output channel of reg offset branch. Defaults to 256.
reg_cls_out_channels (int) – Hidden and output channel of reg cls branch. Defaults to 256.
num_cls_fcs (int) – Number of fcs for cls branch. Defaults to 1.
num_reg_fcs (int) – Number of fcs for reg branch.. Defaults to 0.
reg_class_agnostic (bool) – Class agnostic regression or not. Defaults to True.
norm_cfg (dict) – Config of norm layers. Defaults to None.
bbox_coder (dict) – Config of bbox coder. Defaults ‘BucketingBBoxCoder’.
loss_cls (dict) – Config of classification loss.
loss_bbox_cls (dict) – Config of classification loss for bbox branch.
loss_bbox_reg (dict) – Config of regression loss for bbox branch.
init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to None.
- attention_pool(reg_x: Tensor) tuple [source]¶
Extract direction-specific features fx and fy with attention methanism.
- bbox_pred_split(bbox_pred: tuple, num_proposals_per_img: Sequence[int]) tuple [source]¶
Split batch bbox prediction back to each image.
- bucket_target(pos_proposals_list: list, neg_proposals_list: list, pos_gt_bboxes_list: list, pos_gt_labels_list: list, rcnn_train_cfg: ConfigDict, concat: bool = True) tuple [source]¶
Compute bucketing estimation targets and fine regression targets for a batch of images.
- get_targets(sampling_results: List[SamplingResult], rcnn_train_cfg: ConfigDict, concat: bool = True) tuple [source]¶
Calculate the ground truth for all samples in a batch according to the sampling_results.
- loss(cls_score: Tensor, bbox_pred: Tuple[Tensor, Tensor], rois: Tensor, labels: Tensor, label_weights: Tensor, bbox_targets: Tuple[Tensor, Tensor], bbox_weights: Tuple[Tensor, Tensor], reduction_override: Optional[str] = None) dict [source]¶
Calculate the loss based on the network predictions and targets.
- Parameters
cls_score (Tensor) – Classification prediction results of all class, has shape (batch_size * num_proposals_single_image, num_classes)
bbox_pred (Tensor) – A tuple of regression prediction results containing bucket_cls_preds and bucket_offset_preds.
rois (Tensor) – RoIs with the shape (batch_size * num_proposals_single_image, 5) where the first column indicates batch id of each RoI.
labels (Tensor) – Gt_labels for all proposals in a batch, has shape (batch_size * num_proposals_single_image, ).
label_weights (Tensor) – Labels_weights for all proposals in a batch, has shape (batch_size * num_proposals_single_image, ).
bbox_targets (Tuple[Tensor, Tensor]) – A tuple of regression target containing bucket_cls_targets and bucket_offset_targets. the last dimension 4 represents [tl_x, tl_y, br_x, br_y].
bbox_weights (Tuple[Tensor, Tensor]) – A tuple of regression weights containing bucket_cls_weights and bucket_offset_weights.
reduction_override (str, optional) – The reduction method used to override the original reduction method of the loss. Options are “none”, “mean” and “sum”. Defaults to None,
- Returns
A dictionary of loss.
- Return type
dict
- refine_bboxes(sampling_results: List[SamplingResult], bbox_results: dict, batch_img_metas: List[dict]) List[InstanceData] [source]¶
Refine bboxes during training.
- Parameters
sampling_results (List[
SamplingResult
]) – Sampling results.bbox_results (dict) –
Usually is a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
rois (Tensor): RoIs with the shape (n, 5) where the first column indicates batch id of each RoI.
bbox_targets (tuple): Ground truth for proposals in a single image. Containing the following list of Tensors: (labels, label_weights, bbox_targets, bbox_weights)
batch_img_metas (List[dict]) – List of image information.
- Returns
Refined bboxes of each image.
- Return type
list[
InstanceData
]
- reg_pred(x: Tensor, offset_fcs: ModuleList, cls_fcs: ModuleList) tuple [source]¶
Predict bucketing estimation (cls_pred) and fine regression (offset pred) with side-aware features.
- regress_by_class(rois: Tensor, label: Tensor, bbox_pred: tuple, img_meta: dict) Tensor [source]¶
Regress the bbox for the predicted class. Used in Cascade R-CNN.
- class mmdet.models.roi_heads.SCNetBBoxHead(num_shared_convs: int = 0, num_shared_fcs: int = 0, num_cls_convs: int = 0, num_cls_fcs: int = 0, num_reg_convs: int = 0, num_reg_fcs: int = 0, conv_out_channels: int = 256, fc_out_channels: int = 1024, conv_cfg: Optional[Union[ConfigDict, dict]] = None, norm_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict]] = None, *args, **kwargs)[source]¶
BBox head for SCNet.
This inherits
ConvFCBBoxHead
with modified forward() function, allow us to get intermediate shared feature.- forward(x: Tensor, return_shared_feat: bool = False) Union[Tensor, Tuple[Tensor]] [source]¶
Forward function.
- Parameters
x (Tensor) – input features
return_shared_feat (bool) – If True, return cls-reg-shared feature.
- Returns
- contain
cls_score
andbbox_pred
, if
return_shared_feat
is True, appendx_shared
to the returned tuple.
- contain
- Return type
out (tuple[Tensor])
- class mmdet.models.roi_heads.SCNetMaskHead(conv_to_res: bool = True, **kwargs)[source]¶
Mask head for SCNet.
- Parameters
conv_to_res (bool, optional) – if True, change the conv layers to
SimplifiedBasicBlock
.
- class mmdet.models.roi_heads.SCNetRoIHead(num_stages: int, stage_loss_weights: List[float], semantic_roi_extractor: Optional[Union[ConfigDict, dict]] = None, semantic_head: Optional[Union[ConfigDict, dict]] = None, feat_relay_head: Optional[Union[ConfigDict, dict]] = None, glbctx_head: Optional[Union[ConfigDict, dict]] = None, **kwargs)[source]¶
RoIHead for SCNet.
- Parameters
num_stages (int) – number of cascade stages.
stage_loss_weights (list) – loss weight of cascade stages.
semantic_roi_extractor (dict) – config to init semantic roi extractor.
semantic_head (dict) – config to init semantic head.
feat_relay_head (dict) – config to init feature_relay_head.
glbctx_head (dict) – config to init global context head.
- bbox_loss(stage: int, x: Tuple[Tensor], sampling_results: List[SamplingResult], semantic_feat: Optional[Tensor] = None, glbctx_feat: Optional[Tensor] = None) dict [source]¶
Run forward function and calculate loss for box head in training.
- Parameters
stage (int) – The current stage in Cascade RoI Head.
x (tuple[Tensor]) – List of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
semantic_feat (Tensor) – Semantic feature. Defaults to None.
glbctx_feat (Tensor) – Global context feature. Defaults to None.
- Returns
Usually returns a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
bbox_feats (Tensor): Extract bbox RoI features.
loss_bbox (dict): A dictionary of bbox loss components.
rois (Tensor): RoIs with the shape (n, 5) where the first column indicates batch id of each RoI.
bbox_targets (tuple): Ground truth for proposals in a single image. Containing the following list of Tensors: (labels, label_weights, bbox_targets, bbox_weights)
- Return type
dict
- forward(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) tuple [source]¶
Network forward process. Usually includes backbone, neck and head forward without any post-processing.
- Parameters
x (List[Tensor]) – Multi-level features that may have different resolutions.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – Each item contains the meta information of each image and corresponding annotations.
- Returns
tuple: A tuple of features from
bbox_head
andmask_head
forward.
- global_context_loss(x: Tuple[Tensor], batch_gt_instances: List[InstanceData]) dict [source]¶
Global context loss.
- Parameters
x (Tuple[Tensor]) – Tuple of multi-level img features.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.
- Returns
Usually returns a dictionary with keys:
glbctx_feat (Tensor): Global context feature.
loss_glbctx (dict): Global context loss.
- Return type
dict
- init_mask_head(mask_roi_extractor: Union[ConfigDict, dict], mask_head: Union[ConfigDict, dict]) None [source]¶
Initialize
mask_head
- loss(x: Tensor, rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection roi on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict[str, Tensor]
- mask_loss(x: Tuple[Tensor], sampling_results: List[SamplingResult], batch_gt_instances: List[InstanceData], semantic_feat: Optional[Tensor] = None, glbctx_feat: Optional[Tensor] = None, relayed_feat: Optional[Tensor] = None) dict [source]¶
Run forward function and calculate loss for mask head in training.
- Parameters
x (tuple[Tensor]) – Tuple of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.semantic_feat (Tensor) – Semantic feature. Defaults to None.
glbctx_feat (Tensor) – Global context feature. Defaults to None.
relayed_feat (Tensor) – Relayed feature. Defaults to None.
- Returns
Usually returns a dictionary with keys:
mask_preds (Tensor): Mask prediction.
loss_mask (dict): A dictionary of mask loss components.
- Return type
dict
- predict(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the roi head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Features from upstream network. Each has shape (N, C, H, W).
rpn_results_list (list[
InstanceData
]) – list of region proposals.batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results to the original image. Defaults to False.
- Returns
InstanceData]: Detection results of each image. Each item usually contains following keys.
- scores (Tensor): Classification scores, has a shape
(num_instance, )
- labels (Tensor): Labels of bboxes, has a shape
(num_instances, ).
- bboxes (Tensor): Has a shape (num_instances, 4),
the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[obj
- predict_mask(x: Tuple[Tensor], semantic_heat: Tensor, glbctx_feat: Tensor, batch_img_metas: List[dict], results_list: List[InstanceData], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the mask head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
semantic_feat (Tensor) – Semantic feature.
glbctx_feat (Tensor) – Global context feature.
batch_img_metas (list[dict]) – List of image information.
results_list (list[
InstanceData
]) – Detection results of each image.rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
InstanceData
]
- semantic_loss(x: Tuple[Tensor], batch_data_samples: List[DetDataSample]) dict [source]¶
Semantic segmentation loss.
- Parameters
x (Tuple[Tensor]) – Tuple of multi-level img features.
batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
Usually returns a dictionary with keys:
semantic_feat (Tensor): Semantic feature.
loss_seg (dict): Semantic segmentation loss.
- Return type
dict
- property with_feat_relay: bool¶
whether the head has feature relay head
- Type
bool
- property with_glbctx: bool¶
whether the head has global context head
- Type
bool
- property with_semantic: bool¶
whether the head has semantic head
- Type
bool
- class mmdet.models.roi_heads.SCNetSemanticHead(conv_to_res: bool = True, **kwargs)[source]¶
Mask head for SCNet.
- Parameters
conv_to_res (bool, optional) – if True, change the conv layers to
SimplifiedBasicBlock
.
- class mmdet.models.roi_heads.SingleRoIExtractor(roi_layer: Union[ConfigDict, dict], out_channels: int, featmap_strides: List[int], finest_scale: int = 56, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Extract RoI features from a single level feature map.
If there are multiple input feature levels, each RoI is mapped to a level according to its scale. The mapping rule is proposed in FPN.
- Parameters
roi_layer (
ConfigDict
or dict) – Specify RoI layer type and arguments.out_channels (int) – Output channels of RoI layers.
featmap_strides (List[int]) – Strides of input feature maps.
finest_scale (int) – Scale threshold of mapping to level 0. Defaults to 56.
init_cfg (
ConfigDict
or dict or list[ConfigDict
or dict], optional) – Initialization config dict. Defaults to None.
- forward(feats: Tuple[Tensor], rois: Tensor, roi_scale_factor: Optional[float] = None)[source]¶
Extractor ROI feats.
- Parameters
feats (Tuple[Tensor]) – Multi-scale features.
rois (Tensor) – RoIs with the shape (n, 5) where the first column indicates batch id of each RoI.
roi_scale_factor (Optional[float]) – RoI scale factor. Defaults to None.
- Returns
RoI feature.
- Return type
Tensor
- map_roi_levels(rois: Tensor, num_levels: int) Tensor [source]¶
Map rois to corresponding feature levels by scales.
scale < finest_scale * 2: level 0
finest_scale * 2 <= scale < finest_scale * 4: level 1
finest_scale * 4 <= scale < finest_scale * 8: level 2
scale >= finest_scale * 8: level 3
- Parameters
rois (Tensor) – Input RoIs, shape (k, 5).
num_levels (int) – Total level number.
- Returns
Level index (0-based) of each RoI, shape (k, )
- Return type
Tensor
- class mmdet.models.roi_heads.SparseRoIHead(num_stages: int = 6, stage_loss_weights: Tuple[float] = (1, 1, 1, 1, 1, 1), proposal_feature_channel: int = 256, bbox_roi_extractor: Union[ConfigDict, dict] = {'featmap_strides': [4, 8, 16, 32], 'out_channels': 256, 'roi_layer': {'output_size': 7, 'sampling_ratio': 2, 'type': 'RoIAlign'}, 'type': 'SingleRoIExtractor'}, mask_roi_extractor: Optional[Union[ConfigDict, dict]] = None, bbox_head: Union[ConfigDict, dict] = {'dropout': 0.0, 'feedforward_channels': 2048, 'ffn_act_cfg': {'inplace': True, 'type': 'ReLU'}, 'hidden_channels': 256, 'num_classes': 80, 'num_cls_fcs': 1, 'num_fcs': 2, 'num_heads': 8, 'num_reg_fcs': 3, 'roi_feat_size': 7, 'type': 'DIIHead'}, mask_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict]] = None)[source]¶
The RoIHead for Sparse R-CNN: End-to-End Object Detection with Learnable Proposals and Instances as Queries
- Parameters
num_stages (int) – Number of stage whole iterative process. Defaults to 6.
stage_loss_weights (Tuple[float]) – The loss weight of each stage. By default all stages have the same weight 1.
bbox_roi_extractor (
ConfigDict
or dict) – Config of box roi extractor.mask_roi_extractor (
ConfigDict
or dict) – Config of mask roi extractor.bbox_head (
ConfigDict
or dict) – Config of box head.mask_head (
ConfigDict
or dict) – Config of mask head.train_cfg (
ConfigDict
or dict, Optional) – Configuration information in train stage. Defaults to None.test_cfg (
ConfigDict
or dict, Optional) – Configuration information in test stage. Defaults to None.
:param init_cfg (
ConfigDict
or dict or list[ConfigDict
or : dict]): Initialization config dict. Defaults to None.- bbox_loss(stage: int, x: Tuple[Tensor], results_list: List[InstanceData], object_feats: Tensor, batch_img_metas: List[dict], batch_gt_instances: List[InstanceData]) dict [source]¶
Perform forward propagation and loss calculation of the bbox head on the features of the upstream network.
- Parameters
stage (int) – The current stage in iterative process.
x (tuple[Tensor]) – List of multi-level img features.
results_list (List[
InstanceData
]) – List of region proposals.object_feats (Tensor) – The object feature extracted from the previous stage.
batch_img_metas (list[dict]) – Meta information of each image.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.
- Returns
Usually returns a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
bbox_feats (Tensor): Extract bbox RoI features.
loss_bbox (dict): A dictionary of bbox loss components.
- Return type
dict[str, Tensor]
- forward(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) tuple [source]¶
Network forward process. Usually includes backbone, neck and head forward without any post-processing.
- Parameters
x (List[Tensor]) – Multi-level features that may have different resolutions.
rpn_results_list (List[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
tuple: A tuple of features from
bbox_head
andmask_head
forward.
- loss(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection roi on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
rpn_results_list (List[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
a dictionary of loss components of all stage.
- Return type
dict
- mask_loss(stage: int, x: Tuple[Tensor], bbox_results: dict, batch_gt_instances: List[InstanceData], rcnn_train_cfg: ConfigDict) dict [source]¶
Run forward function and calculate loss for mask head in training.
- Parameters
stage (int) – The current stage in Cascade RoI Head.
x (tuple[Tensor]) – Tuple of multi-level img features.
bbox_results (dict) – Results obtained from bbox_loss.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.(obj (rcnn_train_cfg) – ConfigDict): train_cfg of RCNN.
- Returns
Usually returns a dictionary with keys:
mask_preds (Tensor): Mask prediction.
loss_mask (dict): A dictionary of mask loss components.
- Return type
dict
- predict_bbox(x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: List[InstanceData], rcnn_test_cfg: Union[ConfigDict, dict], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the bbox head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
rpn_results_list (list[
InstanceData
]) – List of region proposals.(obj (rcnn_test_cfg) – ConfigDict): test_cfg of R-CNN.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- predict_mask(x: Tuple[Tensor], batch_img_metas: List[dict], results_list: List[InstanceData], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the mask head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
results_list (list[
InstanceData
]) –Detection results of each image. Each item usually contains following keys:
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
proposal (Tensor): Bboxes predicted from bbox_head, has a shape (num_instances, 4).
topk_inds (Tensor): Topk indices of each image, has shape (num_instances, )
attn_feats (Tensor): Intermediate feature get from the last diihead, has shape (num_instances, feature_dimensions)
rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.StandardRoIHead(bbox_roi_extractor: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, bbox_head: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, mask_roi_extractor: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, mask_head: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None, shared_head: Optional[Union[ConfigDict, dict]] = None, train_cfg: Optional[Union[ConfigDict, dict]] = None, test_cfg: Optional[Union[ConfigDict, dict]] = None, init_cfg: Optional[Union[ConfigDict, dict, List[Union[ConfigDict, dict]]]] = None)[source]¶
Simplest base roi head including one bbox head and one mask head.
- bbox_loss(x: Tuple[Tensor], sampling_results: List[SamplingResult]) dict [source]¶
Perform forward propagation and loss calculation of the bbox head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
- Returns
Usually returns a dictionary with keys:
cls_score (Tensor): Classification scores.
bbox_pred (Tensor): Box energies / deltas.
bbox_feats (Tensor): Extract bbox RoI features.
loss_bbox (dict): A dictionary of bbox loss components.
- Return type
dict[str, Tensor]
- forward(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: Optional[List[DetDataSample]] = None) tuple [source]¶
Network forward process. Usually includes backbone, neck and head forward without any post-processing.
- Parameters
x (List[Tensor]) – Multi-level features that may have different resolutions.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – Each item containscorresponding (the meta information of each image and) –
annotations. –
- Returns
tuple: A tuple of features from
bbox_head
andmask_head
forward.
- init_bbox_head(bbox_roi_extractor: Union[ConfigDict, dict], bbox_head: Union[ConfigDict, dict]) None [source]¶
Initialize box head and box roi extractor.
- Parameters
bbox_roi_extractor (dict or ConfigDict) – Config of box roi extractor.
bbox_head (dict or ConfigDict) – Config of box in box head.
- init_mask_head(mask_roi_extractor: Union[ConfigDict, dict], mask_head: Union[ConfigDict, dict]) None [source]¶
Initialize mask head and mask roi extractor.
- Parameters
mask_roi_extractor (dict or ConfigDict) – Config of mask roi extractor.
mask_head (dict or ConfigDict) – Config of mask in mask head.
- loss(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample]) dict [source]¶
Perform forward propagation and loss calculation of the detection roi on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – List of multi-level img features.
rpn_results_list (list[
InstanceData
]) – List of region proposals.batch_data_samples (list[
DetDataSample
]) – The batch data samples. It usually includes information such as gt_instance or gt_panoptic_seg or gt_sem_seg.
- Returns
A dictionary of loss components
- Return type
dict[str, Tensor]
- mask_loss(x: Tuple[Tensor], sampling_results: List[SamplingResult], bbox_feats: Tensor, batch_gt_instances: List[InstanceData]) dict [source]¶
Perform forward propagation and loss calculation of the mask head on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Tuple of multi-level img features.
(list["obj (sampling_results) – SamplingResult]): Sampling results.
bbox_feats (Tensor) – Extract bbox RoI features.
batch_gt_instances (list[
InstanceData
]) – Batch of gt_instance. It usually includesbboxes
,labels
, andmasks
attributes.
- Returns
Usually returns a dictionary with keys:
mask_preds (Tensor): Mask prediction.
mask_feats (Tensor): Extract mask RoI features.
mask_targets (Tensor): Mask target of each positive proposals in the image.
loss_mask (dict): A dictionary of mask loss components.
- Return type
dict
- predict_bbox(x: Tuple[Tensor], batch_img_metas: List[dict], rpn_results_list: List[InstanceData], rcnn_test_cfg: Union[ConfigDict, dict], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the bbox head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
rpn_results_list (list[
InstanceData
]) – List of region proposals.(obj (rcnn_test_cfg) – ConfigDict): test_cfg of R-CNN.
rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[
InstanceData
]
- predict_mask(x: Tuple[Tensor], batch_img_metas: List[dict], results_list: List[InstanceData], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the mask head and predict detection results on the features of the upstream network.
- Parameters
x (tuple[Tensor]) – Feature maps of all scale level.
batch_img_metas (list[dict]) – List of image information.
results_list (list[
InstanceData
]) – Detection results of each image.rescale (bool) – If True, return boxes in original image space. Defaults to False.
- Returns
Detection results of each image after the post process. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
masks (Tensor): Has a shape (num_instances, H, W).
- Return type
list[
InstanceData
]
- class mmdet.models.roi_heads.TridentRoIHead(num_branch: int, test_branch_idx: int, **kwargs)[source]¶
Trident roi head.
- Parameters
num_branch (int) – Number of branches in TridentNet.
test_branch_idx (int) – In inference, all 3 branches will be used if test_branch_idx==-1, otherwise only branch with index test_branch_idx will be used.
- merge_trident_bboxes(trident_results: List[InstanceData]) InstanceData [source]¶
Merge bbox predictions of each branch.
- Parameters
trident_results (List[
InstanceData
]) – A list of InstanceData predicted from every branch.- Returns
merged InstanceData.
- Return type
InstanceData
- predict(x: Tuple[Tensor], rpn_results_list: List[InstanceData], batch_data_samples: List[DetDataSample], rescale: bool = False) List[InstanceData] [source]¶
Perform forward propagation of the roi head and predict detection results on the features of the upstream network.
Compute prediction bbox and label per branch.
Merge predictions of each branch according to scores of bboxes, i.e., bboxes with higher score are kept to give top-k prediction.
- Parameters
x (tuple[Tensor]) – Features from upstream network. Each has shape (N, C, H, W).
rpn_results_list (list[
InstanceData
]) – list of region proposals.batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.rescale (bool) – Whether to rescale the results to the original image. Defaults to True.
- Returns
InstanceData]: Detection results of each image. Each item usually contains following keys.
scores (Tensor): Classification scores, has a shape (num_instance, )
labels (Tensor): Labels of bboxes, has a shape (num_instances, ).
bboxes (Tensor): Has a shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
- Return type
list[obj
seg_heads¶
task_modules¶
- mmdet.models.task_modules.build_iou_calculator(cfg, default_args=None)[source]¶
Builder of IoU calculator.
test_time_augs¶
- class mmdet.models.test_time_augs.DetTTAModel(tta_cfg=None, **kwargs)[source]¶
Merge augmented detection results, only bboxes corresponding score under flipping and multi-scale resizing can be processed now.
Examples
>>> tta_model = dict( >>> type='DetTTAModel', >>> tta_cfg=dict(nms=dict( >>> type='nms', >>> iou_threshold=0.5), >>> max_per_img=100)) >>> >>> tta_pipeline = [ >>> dict(type='LoadImageFromFile', >>> backend_args=None), >>> dict( >>> type='TestTimeAug', >>> transforms=[[ >>> dict(type='Resize', >>> scale=(1333, 800), >>> keep_ratio=True), >>> ], [ >>> dict(type='RandomFlip', prob=1.), >>> dict(type='RandomFlip', prob=0.) >>> ], [ >>> dict( >>> type='PackDetInputs', >>> meta_keys=('img_id', 'img_path', 'ori_shape', >>> 'img_shape', 'scale_factor', 'flip', >>> 'flip_direction')) >>> ]])]
- merge_aug_bboxes(aug_bboxes: List[Tensor], aug_scores: List[Tensor], img_metas: List[str]) Tuple[Tensor, Tensor] [source]¶
Merge augmented detection bboxes and scores.
- Parameters
aug_bboxes (list[Tensor]) – shape (n, 4*#class)
aug_scores (list[Tensor] or None) – shape (n, #class)
- Returns
bboxes
with shape (n,4), where 4 represent (tl_x, tl_y, br_x, br_y) andscores
with shape (n,).- Return type
tuple[Tensor]
- merge_preds(data_samples_list: List[List[DetDataSample]])[source]¶
Merge batch predictions of enhanced data.
- Parameters
data_samples_list (List[List[DetDataSample]]) – List of predictions of all enhanced data. The outer list indicates images, and the inner list corresponds to the different views of one image. Each element of the inner list is a
DetDataSample
.- Returns
Merged batch prediction.
- Return type
List[DetDataSample]
- mmdet.models.test_time_augs.merge_aug_bboxes(aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)[source]¶
Merge augmented detection bboxes and scores.
- Parameters
aug_bboxes (list[Tensor]) – shape (n, 4*#class)
aug_scores (list[Tensor] or None) – shape (n, #class)
img_shapes (list[Tensor]) – shape (3, ).
rcnn_test_cfg (dict) – rcnn test config.
- Returns
(bboxes, scores)
- Return type
tuple
- mmdet.models.test_time_augs.merge_aug_masks(aug_masks: List[Tensor], img_metas: dict, weights: Optional[Union[list, Tensor]] = None) Tensor [source]¶
Merge augmented mask prediction.
- Parameters
aug_masks (list[Tensor]) – each has shape (n, c, h, w).
img_metas (dict) – Image information.
weights (list or Tensor) – Weight of each aug_masks, the length should be n.
- Returns
has shape (n, c, h, w)
- Return type
Tensor
- mmdet.models.test_time_augs.merge_aug_proposals(aug_proposals, img_metas, cfg)[source]¶
Merge augmented proposals (multiscale, flip, etc.)
- Parameters
aug_proposals (list[Tensor]) – proposals from different testing schemes, shape (n, 5). Note that they are not rescaled to the original image size.
img_metas (list[dict]) – list of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys see mmdet/datasets/pipelines/formatting.py:Collect.
cfg (dict) – rpn test config.
- Returns
shape (n, 4), proposals corresponding to original image scale.
- Return type
Tensor
- mmdet.models.test_time_augs.merge_aug_results(aug_batch_results, aug_batch_img_metas)[source]¶
Merge augmented detection results, only bboxes corresponding score under flipping and multi-scale resizing can be processed now.
- Parameters
(list[list[[obj (aug_batch_results) –
InstanceData]]): Detection results of multiple images with different augmentations. The outer list indicate the augmentation . The inter list indicate the batch dimension. Each item usually contains the following keys.
scores (Tensor): Classification scores, in shape (num_instance,)
labels (Tensor): Labels of bboxes, in shape (num_instances,).
bboxes (Tensor): In shape (num_instances, 4), the last dimension 4 arrange as (x1, y1, x2, y2).
aug_batch_img_metas (list[list[dict]]) – The outer list indicates test-time augs (multiscale, flip, etc.) and the inner list indicates images in a batch. Each dict in the list contains information of an image in the batch.
- Returns
InstanceData]): Same with the input aug_results except that all bboxes have been mapped to the original scale.
- Return type
batch_results (list[obj
utils¶
- class mmdet.models.utils.BertEncoderLayer(config: BertConfig, clamp_min_for_underflow: bool = False, clamp_max_for_overflow: bool = False)[source]¶
A modified version of the BertLayer class from the transformers.models.bert.modeling_bert module.
- Parameters
config (
BertConfig
) – The configuration object that contains various parameters for the model.clamp_min_for_underflow (bool, optional) –
- Whether to clamp the minimum value of the hidden states
to prevent underflow. Defaults to False.
clamp_max_for_overflow (bool, optional) – Whether to clamp the maximum value of the hidden states to prevent overflow. Defaults to False.
- class mmdet.models.utils.VLFuse(v_dim: int = 256, l_dim: int = 768, embed_dim: int = 2048, num_heads: int = 8, dropout: float = 0.1, drop_path: float = 0.0, use_checkpoint: bool = False)[source]¶
Early Fusion Module.
- Parameters
v_dim (int) – Dimension of visual features.
l_dim (int) – Dimension of language features.
embed_dim (int) – The embedding dimension for the attention operation.
num_heads (int) – Number of attention heads.
dropout (float) – Dropout probability.
drop_path (float) – Drop path probability.
use_checkpoint (bool) – Whether to use PyTorch’s checkpoint function.
- mmdet.models.utils.align_tensor(inputs: List[Tensor], max_len: Optional[int] = None) Tensor [source]¶
Pad each input to max_len, then stack them. If max_len is None, then it is the max size of the first dimension of each input.
- Parameters
inputs (list[Tensor]) – The tensors to be padded, Each input should have the same shape except the first dimension.
max_len (int) – Padding target size in the first dimension. Default: None
- Returns
Stacked inputs after padding in the first dimension.
- Return type
Tensor
- mmdet.models.utils.aligned_bilinear(tensor: Tensor, factor: int) Tensor [source]¶
Aligned bilinear, used in original implement in CondInst:
https://github.com/aim-uofa/AdelaiDet/blob/ c0b2092ce72442b0f40972f7c6dda8bb52c46d16/adet/utils/comm.py#L23
- mmdet.models.utils.center_of_mass(mask, esp=1e-06)[source]¶
Calculate the centroid coordinates of the mask.
- Parameters
mask (Tensor) – The mask to be calculated, shape (h, w).
esp (float) – Avoid dividing by zero. Default: 1e-6.
- Returns
the coordinates of the center point of the mask.
center_h (Tensor): the center point of the height.
center_w (Tensor): the center point of the width.
- Return type
tuple[Tensor]
- mmdet.models.utils.empty_instances(batch_img_metas: List[dict], device: device, task_type: str, instance_results: Optional[List[InstanceData]] = None, mask_thr_binary: Union[int, float] = 0, box_type: Union[str, type] = 'hbox', use_box_type: bool = False, num_classes: int = 80, score_per_cls: bool = False) List[InstanceData] [source]¶
Handle predicted instances when RoI is empty.
Note: If
instance_results
is not None, it will be modified in place internally, and then returninstance_results
- Parameters
batch_img_metas (list[dict]) – List of image information.
device (torch.device) – Device of tensor.
task_type (str) – Expected returned task type. it currently supports bbox and mask.
instance_results (list[
InstanceData
]) – List of instance results.mask_thr_binary (int, float) – mask binarization threshold. Defaults to 0.
box_type (str or type) – The empty box type. Defaults to hbox.
use_box_type (bool) – Whether to warp boxes with the box type. Defaults to False.
num_classes (int) – num_classes of bbox_head. Defaults to 80.
score_per_cls (bool) – Whether to generate classwise score for the empty instance.
score_per_cls
will be True when the model needs to produce raw results without nms. Defaults to False.
- Returns
Detection results of each image
- Return type
list[
InstanceData
]
- mmdet.models.utils.filter_gt_instances(batch_data_samples: List[DetDataSample], score_thr: Optional[float] = None, wh_thr: Optional[tuple] = None)[source]¶
Filter ground truth (GT) instances by score and/or size.
- Parameters
batch_data_samples (SampleList) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.
score_thr (float) – The score filter threshold.
wh_thr (tuple) – Minimum width and height of bbox.
- Returns
The Data Samples filtered by score and/or size.
- Return type
SampleList
- mmdet.models.utils.filter_scores_and_topk(scores, score_thr, topk, results=None)[source]¶
Filter results using score threshold and topk candidates.
- Parameters
scores (Tensor) – The scores, shape (num_bboxes, K).
score_thr (float) – The score filter threshold.
topk (int) – The number of topk candidates.
results (dict or list or Tensor, Optional) – The results to which the filtering rule is to be applied. The shape of each item is (num_bboxes, N).
- Returns
Filtered results
scores (Tensor): The scores after being filtered, shape (num_bboxes_filtered, ).
labels (Tensor): The class labels, shape (num_bboxes_filtered, ).
anchor_idxs (Tensor): The anchor indexes, shape (num_bboxes_filtered, ).
filtered_results (dict or list or Tensor, Optional): The filtered results. The shape of each item is (num_bboxes_filtered, N).
- Return type
tuple
- mmdet.models.utils.flip_tensor(src_tensor, flip_direction)[source]¶
Flip tensor base on flip_direction.
- Parameters
src_tensor (Tensor) – input feature map, shape (B, C, H, W).
flip_direction (str) – The flipping direction. Options are ‘horizontal’, ‘vertical’, ‘diagonal’.
- Returns
Flipped tensor.
- Return type
out_tensor (Tensor)
- mmdet.models.utils.gather_feat(feat, ind, mask=None)[source]¶
Gather feature according to index.
- Parameters
feat (Tensor) – Target feature map.
ind (Tensor) – Target coord index.
mask (Tensor | None) – Mask of feature map. Default: None.
- Returns
Gathered feature.
- Return type
feat (Tensor)
- mmdet.models.utils.gaussian_radius(det_size, min_overlap)[source]¶
Generate 2D gaussian radius.
This function is modified from the official github repo.
Given
min_overlap
, radius could computed by a quadratic equation according to Vieta’s formulas.There are 3 cases for computing gaussian radius, details are following:
Explanation of figure:
lt
andbr
indicates the left-top and bottom-right corner of ground truth box.x
indicates the generated corner at the limited position whenradius=r
.Case1: one corner is inside the gt box and the other is outside.
|< width >| lt-+----------+ - | | | ^ +--x----------+--+ | | | | | | | | height | | overlap | | | | | | | | | | v +--+---------br--+ - | | | +----------+--x
To ensure IoU of generated box and gt box is larger than
min_overlap
:\[\begin{split}\cfrac{(w-r)*(h-r)}{w*h+(w+h)r-r^2} \ge {iou} \quad\Rightarrow\quad {r^2-(w+h)r+\cfrac{1-iou}{1+iou}*w*h} \ge 0 \\ {a} = 1,\quad{b} = {-(w+h)},\quad{c} = {\cfrac{1-iou}{1+iou}*w*h} {r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a}\end{split}\]Case2: both two corners are inside the gt box.
|< width >| lt-+----------+ - | | | ^ +--x-------+ | | | | | | |overlap| | height | | | | | +-------x--+ | | | v +----------+-br -
To ensure IoU of generated box and gt box is larger than
min_overlap
:\[\begin{split}\cfrac{(w-2*r)*(h-2*r)}{w*h} \ge {iou} \quad\Rightarrow\quad {4r^2-2(w+h)r+(1-iou)*w*h} \ge 0 \\ {a} = 4,\quad {b} = {-2(w+h)},\quad {c} = {(1-iou)*w*h} {r} \le \cfrac{-b-\sqrt{b^2-4*a*c}}{2*a}\end{split}\]Case3: both two corners are outside the gt box.
|< width >| x--+----------------+ | | | +-lt-------------+ | - | | | | ^ | | | | | | overlap | | height | | | | | | | | v | +------------br--+ - | | | +----------------+--x
To ensure IoU of generated box and gt box is larger than
min_overlap
:\[\begin{split}\cfrac{w*h}{(w+2*r)*(h+2*r)} \ge {iou} \quad\Rightarrow\quad {4*iou*r^2+2*iou*(w+h)r+(iou-1)*w*h} \le 0 \\ {a} = {4*iou},\quad {b} = {2*iou*(w+h)},\quad {c} = {(iou-1)*w*h} \\ {r} \le \cfrac{-b+\sqrt{b^2-4*a*c}}{2*a}\end{split}\]- Parameters
det_size (list[int]) – Shape of object.
min_overlap (float) – Min IoU with ground truth for boxes generated by keypoints inside the gaussian kernel.
- Returns
Radius of gaussian kernel.
- Return type
radius (int)
- mmdet.models.utils.gen_gaussian_target(heatmap, center, radius, k=1)[source]¶
Generate 2D gaussian heatmap.
- Parameters
heatmap (Tensor) – Input heatmap, the gaussian kernel will cover on it and maintain the max value.
center (list[int]) – Coord of gaussian kernel’s center.
radius (int) – Radius of gaussian kernel.
k (int) – Coefficient of gaussian kernel. Default: 1.
- Returns
Updated heatmap covered by gaussian kernel.
- Return type
out_heatmap (Tensor)
- mmdet.models.utils.generate_coordinate(featmap_sizes, device='cuda')[source]¶
Generate the coordinate.
- Parameters
featmap_sizes (tuple) – The feature to be calculated, of shape (N, C, W, H).
device (str) – The device where the feature will be put on.
- Returns
The coordinate feature, of shape (N, 2, W, H).
- Return type
coord_feat (Tensor)
- mmdet.models.utils.get_local_maximum(heat, kernel=3)[source]¶
Extract local maximum pixel with given kernel.
- Parameters
heat (Tensor) – Target heatmap.
kernel (int) – Kernel size of max pooling. Default: 3.
- Returns
- A heatmap where local maximum pixels maintain its
own value and other positions are 0.
- Return type
heat (Tensor)
- mmdet.models.utils.get_topk_from_heatmap(scores, k=20)[source]¶
Get top k positions from heatmap.
- Parameters
scores (Tensor) – Target heatmap with shape [batch, num_classes, height, width].
k (int) – Target number. Default: 20.
- Returns
- Scores, indexes, categories and coords of
topk keypoint. Containing following Tensors:
topk_scores (Tensor): Max scores of each topk keypoint.
topk_inds (Tensor): Indexes of each topk keypoint.
topk_clses (Tensor): Categories of each topk keypoint.
topk_ys (Tensor): Y-coord of each topk keypoint.
topk_xs (Tensor): X-coord of each topk keypoint.
- Return type
tuple[torch.Tensor]
- mmdet.models.utils.get_uncertain_point_coords_with_randomness(mask_preds: Tensor, labels: Tensor, num_points: int, oversample_ratio: float, importance_sample_ratio: float) Tensor [source]¶
Get
num_points
most uncertain points with random points during train.Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The uncertainties are calculated for each point using ‘get_uncertainty()’ function that takes point’s logit prediction as input.
- Parameters
mask_preds (Tensor) – A tensor of shape (num_rois, num_classes, mask_height, mask_width) for class-specific or class-agnostic prediction.
labels (Tensor) – The ground truth class for each instance.
num_points (int) – The number of points to sample.
oversample_ratio (float) – Oversampling parameter.
importance_sample_ratio (float) – Ratio of points that are sampled via importnace sampling.
- Returns
- A tensor of shape (num_rois, num_points, 2)
that contains the coordinates sampled points.
- Return type
point_coords (Tensor)
- mmdet.models.utils.get_uncertainty(mask_preds: Tensor, labels: Tensor) Tensor [source]¶
Estimate uncertainty based on pred logits.
We estimate uncertainty as L1 distance between 0.0 and the logits prediction in ‘mask_preds’ for the foreground class in classes.
- Parameters
mask_preds (Tensor) – mask predication logits, shape (num_rois, num_classes, mask_height, mask_width).
labels (Tensor) – Either predicted or ground truth label for each predicted mask, of length num_rois.
- Returns
- Uncertainty scores with the most uncertain
locations having the highest uncertainty score, shape (num_rois, 1, mask_height, mask_width)
- Return type
scores (Tensor)
- mmdet.models.utils.images_to_levels(target, num_levels)[source]¶
Convert targets by image to targets by feature level.
[target_img0, target_img1] -> [target_level0, target_level1, …]
- mmdet.models.utils.imrenormalize(img: Union[Tensor, ndarray], img_norm_cfg: dict, new_img_norm_cfg: dict) Union[Tensor, ndarray] [source]¶
Re-normalize the image.
- Parameters
img (Tensor | ndarray) – Input image. If the input is a Tensor, the shape is (1, C, H, W). If the input is a ndarray, the shape is (H, W, C).
img_norm_cfg (dict) – Original configuration for the normalization.
new_img_norm_cfg (dict) – New configuration for the normalization.
- Returns
Output image with the same type and shape of the input.
- Return type
Tensor | ndarray
- mmdet.models.utils.interpolate_as(source, target, mode='bilinear', align_corners=False)[source]¶
Interpolate the source to the shape of the target.
The source must be a Tensor, but the target can be a Tensor or a np.ndarray with the shape (…, target_h, target_w).
- Parameters
source (Tensor) – A 3D/4D Tensor with the shape (N, H, W) or (N, C, H, W).
target (Tensor | np.ndarray) – The interpolation target with the shape (…, target_h, target_w).
mode (str) – Algorithm used for interpolation. The options are the same as those in F.interpolate(). Default:
'bilinear'
.align_corners (bool) – The same as the argument in F.interpolate().
- Returns
The interpolated source Tensor.
- Return type
Tensor
- mmdet.models.utils.levels_to_images(mlvl_tensor: List[Tensor]) List[Tensor] [source]¶
Concat multi-level feature maps by image.
[feature_level0, feature_level1…] -> [feature_image0, feature_image1…] Convert the shape of each element in mlvl_tensor from (N, C, H, W) to (N, H*W , C), then split the element to N elements with shape (H*W, C), and concat elements in same image of all level along first dimension.
- Parameters
mlvl_tensor (list[Tensor]) – list of Tensor which collect from corresponding level. Each element is of shape (N, C, H, W)
- Returns
- A list that contains N tensors and each tensor is
of shape (num_elements, C)
- Return type
list[Tensor]
- mmdet.models.utils.make_divisible(value, divisor, min_value=None, min_ratio=0.9)[source]¶
Make divisible function.
This function rounds the channel number to the nearest value that can be divisible by the divisor. It is taken from the original tf repo. It ensures that all layers have a channel number that is divisible by divisor. It can be seen here: https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py # noqa
- Parameters
value (int) – The original channel number.
divisor (int) – The divisor to fully divide the channel number.
min_value (int) – The minimum value of the output channel. Default: None, means that the minimum value equal to the divisor.
min_ratio (float) – The minimum ratio of the rounded channel number to the original channel number. Default: 0.9.
- Returns
The modified output channel number.
- Return type
int
- mmdet.models.utils.mask2ndarray(mask)[source]¶
Convert Mask to ndarray..
:param mask (
BitmapMasks
orPolygonMasks
or: :param torch.Tensor or np.ndarray): The mask to be converted.- Returns
Ndarray mask of shape (n, h, w) that has been converted
- Return type
np.ndarray
- mmdet.models.utils.multi_apply(func, *args, **kwargs)[source]¶
Apply function to a list of arguments.
Note
This function applies the
func
to multiple inputs and map the multiple outputs of thefunc
into different list. Each list contains the same type of outputs corresponding to different inputs.- Parameters
func (Function) – A function that will be applied to a list of arguments
- Returns
A tuple containing multiple list, each list contains a kind of returned results by the function
- Return type
tuple(list)
- mmdet.models.utils.permute_and_flatten(layer: Tensor, N: int, A: int, C: int, H: int, W: int) Tensor [source]¶
Permute and then flatten a tensor,
from size (N, A, C, H, W) to (N, H * W * A, C).
- Parameters
layer (Tensor) – Tensor of shape (N, C, H, W).
N (int) – Batch size.
A (int) – Number of attention heads.
C (int) – Number of channels.
H (int) – Height of feature map.
W (int) – Width of feature map.
- Returns
A Tensor of shape (N, H * W * A, C).
- Return type
Tensor
- mmdet.models.utils.preprocess_panoptic_gt(gt_labels: Tensor, gt_masks: Tensor, gt_semantic_seg: Tensor, num_things: int, num_stuff: int) Tuple[Tensor, Tensor] [source]¶
Preprocess the ground truth for a image.
- Parameters
gt_labels (Tensor) – Ground truth labels of each bbox, with shape (num_gts, ).
gt_masks (BitmapMasks) – Ground truth masks of each instances of a image, shape (num_gts, h, w).
gt_semantic_seg (Tensor | None) – Ground truth of semantic segmentation with the shape (1, h, w). [0, num_thing_class - 1] means things, [num_thing_class, num_class-1] means stuff, 255 means VOID. It’s None when training instance segmentation.
- Returns
a tuple containing the following targets.
- labels (Tensor): Ground truth class indices for a
image, with shape (n, ), n is the sum of number of stuff type and number of instance in a image.
- masks (Tensor): Ground truth mask for a image, with
shape (n, h, w). Contains stuff and things when training panoptic segmentation, and things only when training instance segmentation.
- Return type
tuple[Tensor, Tensor]
- mmdet.models.utils.relative_coordinate_maps(locations: Tensor, centers: Tensor, strides: Tensor, size_of_interest: int, feat_sizes: Tuple[int]) Tensor [source]¶
Generate the relative coordinate maps with feat_stride.
- Parameters
locations (Tensor) – The prior location of mask feature map. It has shape (num_priors, 2).
centers (Tensor) – The prior points of a object in all feature pyramid. It has shape (num_pos, 2)
strides (Tensor) – The prior strides of a object in all feature pyramid. It has shape (num_pos, 1)
size_of_interest (int) – The size of the region used in rel coord.
feat_sizes (Tuple[int]) – The feature size H and W, which has 2 dims.
- Returns
- The coordinate feature
of shape (num_pos, 2, H, W).
- Return type
rel_coord_feat (Tensor)
- mmdet.models.utils.rename_loss_dict(prefix: str, losses: dict) dict [source]¶
Rename the key names in loss dict by adding a prefix.
- Parameters
prefix (str) – The prefix for loss components.
losses (dict) – A dictionary of loss components.
- Returns
A dictionary of loss components with prefix.
- Return type
dict
- mmdet.models.utils.reweight_loss_dict(losses: dict, weight: float) dict [source]¶
Reweight losses in the dict by weight.
- Parameters
losses (dict) – A dictionary of loss components.
weight (float) – Weight for loss components.
- Returns
A dictionary of weighted loss components.
- Return type
dict
- mmdet.models.utils.select_single_mlvl(mlvl_tensors, batch_id, detach=True)[source]¶
Extract a multi-scale single image tensor from a multi-scale batch tensor based on batch index.
Note: The default value of detach is True, because the proposal gradient needs to be detached during the training of the two-stage model. E.g Cascade Mask R-CNN.
- Parameters
mlvl_tensors (list[Tensor]) – Batch tensor for all scale levels, each is a 4D-tensor.
batch_id (int) – Batch index.
detach (bool) – Whether detach gradient. Default True.
- Returns
Multi-scale single image tensor.
- Return type
list[Tensor]
- mmdet.models.utils.transpose_and_gather_feat(feat, ind)[source]¶
Transpose and gather feature according to index.
- Parameters
feat (Tensor) – Target feature map.
ind (Tensor) – Target coord index.
- Returns
Transposed and gathered feature.
- Return type
feat (Tensor)
- mmdet.models.utils.unfold_wo_center(x, kernel_size: int, dilation: int) Tensor [source]¶
unfold_wo_center, used in original implement in BoxInst:
https://github.com/aim-uofa/AdelaiDet/blob/ 4a3a1f7372c35b48ebf5f6adc59f135a0fa28d60/ adet/modeling/condinst/condinst.py#L53
- mmdet.models.utils.unmap(data, count, inds, fill=0)[source]¶
Unmap a subset of item (data) back to the original set of items (of size count)
- mmdet.models.utils.unpack_gt_instances(batch_data_samples: List[DetDataSample]) tuple [source]¶
Unpack
gt_instances
,gt_instances_ignore
andimg_metas
based onbatch_data_samples
- Parameters
batch_data_samples (List[
DetDataSample
]) – The Data Samples. It usually includes information such as gt_instance, gt_panoptic_seg and gt_sem_seg.- Returns
- batch_gt_instances (list[
InstanceData
]): Batch of gt_instance. It usually includes
bboxes
andlabels
attributes.
- batch_gt_instances (list[
- batch_gt_instances_ignore (list[
InstanceData
]): Batch of gt_instances_ignore. It includes
bboxes
attribute data that is ignored during training and testing. Defaults to None.
- batch_gt_instances_ignore (list[
- batch_img_metas (list[dict]): Meta information of each image,
e.g., image size, scaling factor, etc.
- Return type
tuple
- mmdet.models.utils.weighted_boxes_fusion(bboxes_list: list, scores_list: list, labels_list: list, weights: Optional[list] = None, iou_thr: float = 0.55, skip_box_thr: float = 0.0, conf_type: str = 'avg', allows_overflow: bool = False) Tuple[Tensor, Tensor, Tensor] [source]¶
weighted boxes fusion <https://arxiv.org/abs/1910.13302> is a method for fusing predictions from different object detection models, which utilizes confidence scores of all proposed bounding boxes to construct averaged boxes.
- Parameters
bboxes_list (list) – list of boxes predictions from each model, each box is 4 numbers.
scores_list (list) – list of scores for each model
labels_list (list) – list of labels for each model
weights – list of weights for each model. Default: None, which means weight == 1 for each model
iou_thr – IoU value for boxes to be a match
skip_box_thr – exclude boxes with score lower than this variable.
conf_type –
how to calculate confidence in weighted boxes. ‘avg’: average value, ‘max’: maximum value, ‘box_and_model_avg’: box and model wise hybrid weighted average, ‘absent_model_aware_avg’: weighted average that takes into
account the absent model.
allows_overflow – false if we want confidence score not exceed 1.0.
- Returns
boxes coordinates (Order of boxes: x1, y1, x2, y2). scores(Tensor): confidence scores labels(Tensor): boxes labels
- Return type
bboxes(Tensor)
mmdet.structures¶
structures¶
- class mmdet.structures.DetDataSample(*, metainfo: Optional[dict] = None, **kwargs)[source]¶
A data structure interface of MMDetection. They are used as interfaces between different components.
The attributes in
DetDataSample
are divided into several parts:- ``proposals``(InstanceData): Region proposals used in two-stage
detectors.
``gt_instances``(InstanceData): Ground truth of instance annotations.
``pred_instances``(InstanceData): Instances of detection predictions.
- ``pred_track_instances``(InstanceData): Instances of tracking
predictions.
- ``ignored_instances``(InstanceData): Instances to be ignored during
training/testing.
- ``gt_panoptic_seg``(PixelData): Ground truth of panoptic
segmentation.
- ``pred_panoptic_seg``(PixelData): Prediction of panoptic
segmentation.
``gt_sem_seg``(PixelData): Ground truth of semantic segmentation.
``pred_sem_seg``(PixelData): Prediction of semantic segmentation.
Examples
>>> import torch >>> import numpy as np >>> from mmengine.structures import InstanceData >>> from mmdet.structures import DetDataSample
>>> data_sample = DetDataSample() >>> img_meta = dict(img_shape=(800, 1196), ... pad_shape=(800, 1216)) >>> gt_instances = InstanceData(metainfo=img_meta) >>> gt_instances.bboxes = torch.rand((5, 4)) >>> gt_instances.labels = torch.rand((5,)) >>> data_sample.gt_instances = gt_instances >>> assert 'img_shape' in data_sample.gt_instances.metainfo_keys() >>> len(data_sample.gt_instances) 5 >>> print(data_sample)
<DetDataSample(
META INFORMATION
DATA FIELDS gt_instances: <InstanceData(
META INFORMATION pad_shape: (800, 1216) img_shape: (800, 1196)
DATA FIELDS labels: tensor([0.8533, 0.1550, 0.5433, 0.7294, 0.5098]) bboxes: tensor([[9.7725e-01, 5.8417e-01, 1.7269e-01, 6.5694e-01],
[1.7894e-01, 5.1780e-01, 7.0590e-01, 4.8589e-01], [7.0392e-01, 6.6770e-01, 1.7520e-01, 1.4267e-01], [2.2411e-01, 5.1962e-01, 9.6953e-01, 6.6994e-01], [4.1338e-01, 2.1165e-01, 2.7239e-04, 6.8477e-01]])
) at 0x7f21fb1b9190>
- ) at 0x7f21fb1b9880>
>>> pred_instances = InstanceData(metainfo=img_meta) >>> pred_instances.bboxes = torch.rand((5, 4)) >>> pred_instances.scores = torch.rand((5,)) >>> data_sample = DetDataSample(pred_instances=pred_instances) >>> assert 'pred_instances' in data_sample
>>> pred_track_instances = InstanceData(metainfo=img_meta) >>> pred_track_instances.bboxes = torch.rand((5, 4)) >>> pred_track_instances.scores = torch.rand((5,)) >>> data_sample = DetDataSample( ... pred_track_instances=pred_track_instances) >>> assert 'pred_track_instances' in data_sample
>>> data_sample = DetDataSample() >>> gt_instances_data = dict( ... bboxes=torch.rand(2, 4), ... labels=torch.rand(2), ... masks=np.random.rand(2, 2, 2)) >>> gt_instances = InstanceData(**gt_instances_data) >>> data_sample.gt_instances = gt_instances >>> assert 'gt_instances' in data_sample >>> assert 'masks' in data_sample.gt_instances
>>> data_sample = DetDataSample() >>> gt_panoptic_seg_data = dict(panoptic_seg=torch.rand(2, 4)) >>> gt_panoptic_seg = PixelData(**gt_panoptic_seg_data) >>> data_sample.gt_panoptic_seg = gt_panoptic_seg >>> print(data_sample)
<DetDataSample(
META INFORMATION
DATA FIELDS _gt_panoptic_seg: <BaseDataElement(
META INFORMATION
DATA FIELDS panoptic_seg: tensor([[0.7586, 0.1262, 0.2892, 0.9341],
[0.3200, 0.7448, 0.1052, 0.5371]])
) at 0x7f66c2bb7730>
gt_panoptic_seg: <BaseDataElement(
META INFORMATION
DATA FIELDS panoptic_seg: tensor([[0.7586, 0.1262, 0.2892, 0.9341],
[0.3200, 0.7448, 0.1052, 0.5371]])
) at 0x7f66c2bb7730>
) at 0x7f66c2bb7280> >>> data_sample = DetDataSample() >>> gt_segm_seg_data = dict(segm_seg=torch.rand(2, 2, 2)) >>> gt_segm_seg = PixelData(**gt_segm_seg_data) >>> data_sample.gt_segm_seg = gt_segm_seg >>> assert ‘gt_segm_seg’ in data_sample >>> assert ‘segm_seg’ in data_sample.gt_segm_seg
- class mmdet.structures.ReIDDataSample(*, metainfo: Optional[dict] = None, **kwargs)[source]¶
A data structure interface of ReID task.
It’s used as interfaces between different components.
- Meta field:
- img_shape (Tuple): The shape of the corresponding input image.
Used for visualization.
- ori_shape (Tuple): The original shape of the corresponding image.
Used for visualization.
- num_classes (int): The number of all categories.
Used for label format conversion.
- Data field:
gt_label (LabelData): The ground truth label. pred_label (LabelData): The predicted label. scores (torch.Tensor): The outputs of model.
- set_gt_label(value: Union[ndarray, Tensor, Sequence[Number], Number]) ReIDDataSample [source]¶
Set label of
gt_label
.
- set_gt_score(value: Tensor) ReIDDataSample [source]¶
Set score of
gt_label
.
- class mmdet.structures.TrackDataSample(*, metainfo: Optional[dict] = None, **kwargs)[source]¶
A data structure interface of tracking task in MMDetection. It is used as interfaces between different components.
This data structure can be viewd as a wrapper of multiple DetDataSample to some extent. Specifically, it only contains a property:
video_data_samples
which is a list of DetDataSample, each of which corresponds to a single frame. If you want to get the property of a single frame, you must first get the correspondingDetDataSample
by indexing and then get the property of the frame, such asgt_instances
,pred_instances
and so on. As for metainfo, it differs fromDetDataSample
in that each value corresponds to the metainfo key is a list where each element corresponds to information of a single frame.Examples
>>> import torch >>> from mmengine.structures import InstanceData >>> from mmdet.structures import DetDataSample, TrackDataSample >>> track_data_sample = TrackDataSample() >>> # set the 1st frame >>> frame1_data_sample = DetDataSample(metainfo=dict( ... img_shape=(100, 100), frame_id=0)) >>> frame1_gt_instances = InstanceData() >>> frame1_gt_instances.bbox = torch.zeros([2, 4]) >>> frame1_data_sample.gt_instances = frame1_gt_instances >>> # set the 2nd frame >>> frame2_data_sample = DetDataSample(metainfo=dict( ... img_shape=(100, 100), frame_id=1)) >>> frame2_gt_instances = InstanceData() >>> frame2_gt_instances.bbox = torch.ones([3, 4]) >>> frame2_data_sample.gt_instances = frame2_gt_instances >>> track_data_sample.video_data_samples = [frame1_data_sample, ... frame2_data_sample] >>> # set metainfo for track_data_sample >>> track_data_sample.set_metainfo(dict(key_frames_inds=[0])) >>> track_data_sample.set_metainfo(dict(ref_frames_inds=[1])) >>> print(track_data_sample) <TrackDataSample(
META INFORMATION key_frames_inds: [0] ref_frames_inds: [1]
DATA FIELDS video_data_samples: [<DetDataSample(
META INFORMATION img_shape: (100, 100)
DATA FIELDS gt_instances: <InstanceData(
META INFORMATION
DATA FIELDS bbox: tensor([[0., 0., 0., 0.],
[0., 0., 0., 0.]])
) at 0x7f639320dcd0>
) at 0x7f64bd223340>, <DetDataSample(
META INFORMATION img_shape: (100, 100)
DATA FIELDS gt_instances: <InstanceData(
META INFORMATION
DATA FIELDS bbox: tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.], [1., 1., 1., 1.]])
) at 0x7f64bd128b20>
) at 0x7f64bd1346d0>]
) at 0x7f64bd2237f0> >>> print(len(track_data_sample)) 2 >>> key_data_sample = track_data_sample.get_key_frames() >>> print(key_data_sample[0].frame_id) 0 >>> ref_data_sample = track_data_sample.get_ref_frames() >>> print(ref_data_sample[0].frame_id) 1 >>> frame1_data_sample = track_data_sample[0] >>> print(frame1_data_sample.gt_instances.bbox) tensor([[0., 0., 0., 0.],
[0., 0., 0., 0.]])
>>> # Tensor-like methods >>> cuda_track_data_sample = track_data_sample.to('cuda') >>> cuda_track_data_sample = track_data_sample.cuda() >>> cpu_track_data_sample = track_data_sample.cpu() >>> cpu_track_data_sample = track_data_sample.to('cpu') >>> fp16_instances = cuda_track_data_sample.to( ... device=None, dtype=torch.float16, non_blocking=False, ... copy=False, memory_format=torch.preserve_format)
- clone() BaseDataElement [source]¶
Deep copy the current data element.
- Returns
The copy of current data element.
- Return type
BaseDataElement
bbox¶
- class mmdet.structures.bbox.BaseBoxes(data: Union[Tensor, ndarray, Sequence], dtype: Optional[dtype] = None, device: Optional[Union[str, device]] = None, clone: bool = True)[source]¶
The base class for 2D box types.
The functions of
BaseBoxes
lie in three fields:Verify the boxes shape.
Support tensor-like operations.
Define abstract functions for 2D boxes.
In
__init__
,BaseBoxes
verifies the validity of the data shape w.r.tbox_dim
. The tensor with the dimension >= 2 and the length of the last dimension beingbox_dim
will be regarded as valid.BaseBoxes
will restore them at the fieldtensor
. It’s necessary to overridebox_dim
in subclass to guarantee the data shape is correct.There are many basic tensor-like functions implemented in
BaseBoxes
. In most cases, users can operateBaseBoxes
instance like a normal tensor. To protect the validity of data shape, All tensor-like functions cannot modify the last dimension ofself.tensor
.When creating a new box type, users need to inherit from
BaseBoxes
and override abstract methods and specify thebox_dim
. Then, register the new box type by using the decoratorregister_box_type
.- Parameters
data (Tensor or np.ndarray or Sequence) – The box data with shape (…, box_dim).
dtype (torch.dtype, Optional) – data type of boxes. Defaults to None.
device (str or torch.device, Optional) – device of boxes. Default to None.
clone (bool) – Whether clone
boxes
or not. Defaults to True.
- abstract property areas: Tensor¶
Return a tensor representing the areas of boxes.
- classmethod cat(box_list: Sequence[T], dim: int = 0) T [source]¶
Cancatenates a box instance list into one single box instance. Similar to
torch.cat
.- Parameters
box_list (Sequence[T]) – A sequence of box instances.
dim (int) – The dimension over which the box are concatenated. Defaults to 0.
- Returns
Concatenated box instance.
- Return type
T
- abstract property centers: Tensor¶
Return a tensor representing the centers of boxes.
- abstract clip_(img_shape: Tuple[int, int]) None [source]¶
Clip boxes according to the image shape in-place.
- Parameters
img_shape (Tuple[int, int]) – A tuple of image height and width.
- convert_to(dst_type: Union[str, type]) BaseBoxes [source]¶
Convert self to another box type.
- Parameters
dst_type (str or type) – destination box type.
- Returns
destination box type object .
- Return type
- property device: device¶
Reload
device
from self.tensor.
- property dtype: dtype¶
Reload
dtype
from self.tensor.
- empty_boxes(dtype: Optional[dtype] = None, device: Optional[Union[str, device]] = None) T [source]¶
Create empty box.
- Parameters
dtype (torch.dtype, Optional) – data type of boxes.
device (str or torch.device, Optional) – device of boxes.
- Returns
empty boxes with shape of (0, box_dim).
- Return type
T
- fake_boxes(sizes: Tuple[int], fill: float = 0, dtype: Optional[dtype] = None, device: Optional[Union[str, device]] = None) T [source]¶
Create fake boxes with specific sizes and fill values.
- Parameters
sizes (Tuple[int]) – The size of fake boxes. The last value must be equal with
self.box_dim
.fill (float) – filling value. Defaults to 0.
dtype (torch.dtype, Optional) – data type of boxes.
device (str or torch.device, Optional) – device of boxes.
- Returns
Fake boxes with shape of
sizes
.- Return type
T
- abstract find_inside_points(points: Tensor, is_aligned: bool = False) BoolTensor [source]¶
Find inside box points. Boxes dimension must be 2.
- Parameters
points (Tensor) – Points coordinates. Has shape of (m, 2).
is_aligned (bool) – Whether
points
has been aligned with boxes or not. If True, the length of boxes andpoints
should be the same. Defaults to False.
- Returns
A BoolTensor indicating whether a point is inside boxes. Assuming the boxes has shape of (n, box_dim), if
is_aligned
is False. The index has shape of (m, n). Ifis_aligned
is True, m should be equal to n and the index has shape of (m, ).- Return type
BoolTensor
- abstract flip_(img_shape: Tuple[int, int], direction: str = 'horizontal') None [source]¶
Flip boxes horizontally or vertically in-place.
- Parameters
img_shape (Tuple[int, int]) – A tuple of image height and width.
direction (str) – Flip direction, options are “horizontal”, “vertical” and “diagonal”. Defaults to “horizontal”
- abstract static from_instance_masks(masks: Union[BitmapMasks, PolygonMasks]) BaseBoxes [source]¶
Create boxes from instance masks.
- Parameters
masks (
BitmapMasks
orPolygonMasks
) – BitmapMasks or PolygonMasks instance with length of n.- Returns
Converted boxes with shape of (n, box_dim).
- Return type
- abstract property heights: Tensor¶
Return a tensor representing the heights of boxes.
- abstract is_inside(img_shape: Tuple[int, int], all_inside: bool = False, allowed_border: int = 0) BoolTensor [source]¶
Find boxes inside the image.
- Parameters
img_shape (Tuple[int, int]) – A tuple of image height and width.
all_inside (bool) – Whether the boxes are all inside the image or part inside the image. Defaults to False.
allowed_border (int) – Boxes that extend beyond the image shape boundary by more than
allowed_border
are considered “outside” Defaults to 0.
- Returns
A BoolTensor indicating whether the box is inside the image. Assuming the original boxes have shape (m, n, box_dim), the output has shape (m, n).
- Return type
BoolTensor
- abstract static overlaps(boxes1: BaseBoxes, boxes2: BaseBoxes, mode: str = 'iou', is_aligned: bool = False, eps: float = 1e-06) Tensor [source]¶
Calculate overlap between two set of boxes with their types converted to the present box type.
- Parameters
boxes1 (
BaseBoxes
) – BaseBoxes with shape of (m, box_dim) or empty.boxes2 (
BaseBoxes
) – BaseBoxes with shape of (n, box_dim) or empty.mode (str) – “iou” (intersection over union), “iof” (intersection over foreground). Defaults to “iou”.
is_aligned (bool) – If True, then m and n must be equal. Defaults to False.
eps (float) – A value added to the denominator for numerical stability. Defaults to 1e-6.
- Returns
shape (m, n) if
is_aligned
is False else shape (m,)- Return type
Tensor
- abstract project_(homography_matrix: Union[Tensor, ndarray]) None [source]¶
Geometric transformat boxes in-place.
- Parameters
homography_matrix (Tensor or np.ndarray]) – Shape (3, 3) for geometric transformation.
- abstract rescale_(scale_factor: Tuple[float, float]) None [source]¶
Rescale boxes w.r.t. rescale_factor in-place.
Note
Both
rescale_
andresize_
will enlarge or shrink boxes w.r.tscale_facotr
. The difference is thatresize_
only changes the width and the height of boxes, butrescale_
also rescales the box centers simultaneously.- Parameters
scale_factor (Tuple[float, float]) – factors for scaling boxes. The length should be 2.
- abstract resize_(scale_factor: Tuple[float, float]) None [source]¶
Resize the box width and height w.r.t scale_factor in-place.
Note
Both
rescale_
andresize_
will enlarge or shrink boxes w.r.tscale_facotr
. The difference is thatresize_
only changes the width and the height of boxes, butrescale_
also rescales the box centers simultaneously.- Parameters
scale_factor (Tuple[float, float]) – factors for scaling box shapes. The length should be 2.
- abstract rotate_(center: Tuple[float, float], angle: float) None [source]¶
Rotate all boxes in-place.
- Parameters
center (Tuple[float, float]) – Rotation origin.
angle (float) – Rotation angle represented in degrees. Positive values mean clockwise rotation.
- split(split_size_or_sections: Union[int, Sequence[int]], dim: int = 0) List[T] [source]¶
Reload
split
from self.tensor.
- classmethod stack(box_list: Sequence[T], dim: int = 0) T [source]¶
Concatenates a sequence of tensors along a new dimension. Similar to
torch.stack
.- Parameters
box_list (Sequence[T]) – A sequence of box instances.
dim (int) – Dimension to insert. Defaults to 0.
- Returns
Concatenated box instance.
- Return type
T
- abstract translate_(distances: Tuple[float, float]) None [source]¶
Translate boxes in-place.
- Parameters
distances (Tuple[float, float]) – translate distances. The first is horizontal distance and the second is vertical distance.
- abstract property widths: Tensor¶
Return a tensor representing the widths of boxes.
- class mmdet.structures.bbox.HorizontalBoxes(data: Union[Tensor, ndarray], dtype: Optional[dtype] = None, device: Optional[Union[str, device]] = None, clone: bool = True, in_mode: Optional[str] = None)[source]¶
The horizontal box class used in MMDetection by default.
The
box_dim
ofHorizontalBoxes
is 4, which means the length of the last dimension of the data should be 4. Two modes of box data are supported inHorizontalBoxes
:‘xyxy’: Each row of data indicates (x1, y1, x2, y2), which are the coordinates of the left-top and right-bottom points.
‘cxcywh’: Each row of data indicates (x, y, w, h), where (x, y) are the coordinates of the box centers and (w, h) are the width and height.
HorizontalBoxes
only restores ‘xyxy’ mode of data. If the the data is in ‘cxcywh’ mode, users need to inputin_mode='cxcywh'
and The code will convert the ‘cxcywh’ data to ‘xyxy’ automatically.- Parameters
data (Tensor or np.ndarray or Sequence) – The box data with shape of (…, 4).
dtype (torch.dtype, Optional) – data type of boxes. Defaults to None.
device (str or torch.device, Optional) – device of boxes. Default to None.
clone (bool) – Whether clone
boxes
or not. Defaults to True.mode (str, Optional) – the mode of boxes. If it is ‘cxcywh’, the data will be converted to ‘xyxy’ mode. Defaults to None.
- property areas: Tensor¶
Return a tensor representing the areas of boxes.
- property centers: Tensor¶
Return a tensor representing the centers of boxes.
- clip_(img_shape: Tuple[int, int]) None [source]¶
Clip boxes according to the image shape in-place.
- Parameters
img_shape (Tuple[int, int]) – A tuple of image height and width.
- static corner2hbox(corners: Tensor) Tensor [source]¶
Convert box coordinates from corners ((x1, y1), (x2, y1), (x1, y2), (x2, y2)) to (x1, y1, x2, y2).
- Parameters
corners (Tensor) – Corner tensor with shape of (…, 4, 2).
- Returns
Horizontal box tensor with shape of (…, 4).
- Return type
Tensor
- create_masks(img_shape: Tuple[int, int]) BitmapMasks [source]¶
- Parameters
img_shape (Tuple[int, int]) – A tuple of image height and width.
- Returns
Converted masks
- Return type
BitmapMasks
- property cxcywh: Tensor¶
Return a tensor representing the cxcywh boxes.
- static cxcywh_to_xyxy(boxes: Tensor) Tensor [source]¶
Convert box coordinates from (cx, cy, w, h) to (x1, y1, x2, y2).
- Parameters
boxes (Tensor) – cxcywh boxes tensor with shape of (…, 4).
- Returns
xyxy boxes tensor with shape of (…, 4).
- Return type
Tensor
- find_inside_points(points: Tensor, is_aligned: bool = False) BoolTensor [source]¶
Find inside box points. Boxes dimension must be 2.
- Parameters
points (Tensor) – Points coordinates. Has shape of (m, 2).
is_aligned (bool) – Whether
points
has been aligned with boxes or not. If True, the length of boxes andpoints
should be the same. Defaults to False.
- Returns
A BoolTensor indicating whether a point is inside boxes. Assuming the boxes has shape of (n, 4), if
is_aligned
is False. The index has shape of (m, n). Ifis_aligned
is True, m should be equal to n and the index has shape of (m, ).- Return type
BoolTensor
- flip_(img_shape: Tuple[int, int], direction: str = 'horizontal') None [source]¶
Flip boxes horizontally or vertically in-place.
- Parameters
img_shape (Tuple[int, int]) – A tuple of image height and width.
direction (str) – Flip direction, options are “horizontal”, “vertical” and “diagonal”. Defaults to “horizontal”
- static from_instance_masks(masks: Union[BitmapMasks, PolygonMasks]) HorizontalBoxes [source]¶
Create horizontal boxes from instance masks.
- Parameters
masks (
BitmapMasks
orPolygonMasks
) – BitmapMasks or PolygonMasks instance with length of n.- Returns
Converted boxes with shape of (n, 4).
- Return type
- static hbox2corner(boxes: Tensor) Tensor [source]¶
Convert box coordinates from (x1, y1, x2, y2) to corners ((x1, y1), (x2, y1), (x1, y2), (x2, y2)).
- Parameters
boxes (Tensor) – Horizontal box tensor with shape of (…, 4).
- Returns
Corner tensor with shape of (…, 4, 2).
- Return type
Tensor
- property heights: Tensor¶
Return a tensor representing the heights of boxes.
- is_inside(img_shape: Tuple[int, int], all_inside: bool = False, allowed_border: int = 0) BoolTensor [source]¶
Find boxes inside the image.
- Parameters
img_shape (Tuple[int, int]) – A tuple of image height and width.
all_inside (bool) – Whether the boxes are all inside the image or part inside the image. Defaults to False.
allowed_border (int) – Boxes that extend beyond the image shape boundary by more than
allowed_border
are considered “outside” Defaults to 0.
- Returns
A BoolTensor indicating whether the box is inside the image. Assuming the original boxes have shape (m, n, 4), the output has shape (m, n).
- Return type
BoolTensor
- static overlaps(boxes1: BaseBoxes, boxes2: BaseBoxes, mode: str = 'iou', is_aligned: bool = False, eps: float = 1e-06) Tensor [source]¶
Calculate overlap between two set of boxes with their types converted to
HorizontalBoxes
.- Parameters
boxes1 (
BaseBoxes
) – BaseBoxes with shape of (m, box_dim) or empty.boxes2 (
BaseBoxes
) – BaseBoxes with shape of (n, box_dim) or empty.mode (str) – “iou” (intersection over union), “iof” (intersection over foreground). Defaults to “iou”.
is_aligned (bool) – If True, then m and n must be equal. Defaults to False.
eps (float) – A value added to the denominator for numerical stability. Defaults to 1e-6.
- Returns
shape (m, n) if
is_aligned
is False else shape (m,)- Return type
Tensor
- project_(homography_matrix: Union[Tensor, ndarray]) None [source]¶
Geometric transformat boxes in-place.
- Parameters
homography_matrix (Tensor or np.ndarray]) – Shape (3, 3) for geometric transformation.
- rescale_(scale_factor: Tuple[float, float]) None [source]¶
Rescale boxes w.r.t. rescale_factor in-place.
Note
Both
rescale_
andresize_
will enlarge or shrink boxes w.r.tscale_facotr
. The difference is thatresize_
only changes the width and the height of boxes, butrescale_
also rescales the box centers simultaneously.- Parameters
scale_factor (Tuple[float, float]) – factors for scaling boxes. The length should be 2.
- resize_(scale_factor: Tuple[float, float]) None [source]¶
Resize the box width and height w.r.t scale_factor in-place.
Note
Both
rescale_
andresize_
will enlarge or shrink boxes w.r.tscale_facotr
. The difference is thatresize_
only changes the width and the height of boxes, butrescale_
also rescales the box centers simultaneously.- Parameters
scale_factor (Tuple[float, float]) – factors for scaling box shapes. The length should be 2.
- rotate_(center: Tuple[float, float], angle: float) None [source]¶
Rotate all boxes in-place.
- Parameters
center (Tuple[float, float]) – Rotation origin.
angle (float) – Rotation angle represented in degrees. Positive values mean clockwise rotation.
- translate_(distances: Tuple[float, float]) None [source]¶
Translate boxes in-place.
- Parameters
distances (Tuple[float, float]) – translate distances. The first is horizontal distance and the second is vertical distance.
- property widths: Tensor¶
Return a tensor representing the widths of boxes.
- mmdet.structures.bbox.autocast_box_type(dst_box_type='hbox') Callable [source]¶
A decorator which automatically casts results[‘gt_bboxes’] to the destination box type.
It commenly used in mmdet.datasets.transforms to make the transforms up- compatible with the np.ndarray type of results[‘gt_bboxes’].
The speed of processing of np.ndarray and BaseBoxes data are the same:
np.ndarray: 0.0509 img/s
BaseBoxes: 0.0551 img/s
- Parameters
dst_box_type (str) – Destination box type.
- mmdet.structures.bbox.bbox2corner(bboxes: Tensor) Tensor [source]¶
Convert bbox coordinates from (x1, y1, x2, y2) to corners ((x1, y1), (x2, y1), (x1, y2), (x2, y2)).
- Parameters
bboxes (Tensor) – Shape (n, 4) for bboxes.
- Returns
Shape (n*4, 2) for corners.
- Return type
Tensor
- mmdet.structures.bbox.bbox2distance(points: Tensor, bbox: Tensor, max_dis: Optional[float] = None, eps: float = 0.1) Tensor [source]¶
Decode bounding box based on distances.
- Parameters
points (Tensor) – Shape (n, 2) or (b, n, 2), [x, y].
bbox (Tensor) – Shape (n, 4) or (b, n, 4), “xyxy” format
max_dis (float, optional) – Upper bound of the distance.
eps (float) – a small value to ensure target < max_dis, instead <=
- Returns
Decoded distances.
- Return type
Tensor
- mmdet.structures.bbox.bbox2result(bboxes: Union[Tensor, ndarray], labels: Union[Tensor, ndarray], num_classes: int) List[ndarray] [source]¶
Convert detection results to a list of numpy arrays.
- Parameters
bboxes (Tensor | np.ndarray) – shape (n, 5)
labels (Tensor | np.ndarray) – shape (n, )
num_classes (int) – class number, including background class
- Returns
bbox results of each class
- Return type
List(np.ndarray])
- mmdet.structures.bbox.bbox2roi(bbox_list: List[Union[Tensor, BaseBoxes]]) Tensor [source]¶
Convert a list of bboxes to roi format.
- Parameters
bbox_list (List[Union[Tensor,
BaseBoxes
]) – a list of bboxes corresponding to a batch of images.- Returns
shape (n, box_dim + 1), where
box_dim
depends on the different box types. For example, If the box type inbbox_list
is HorizontalBoxes, the output shape is (n, 5). Each row of data indicates [batch_ind, x1, y1, x2, y2].- Return type
Tensor
- mmdet.structures.bbox.bbox_cxcyah_to_xyxy(bboxes: Tensor) Tensor [source]¶
Convert bbox coordinates from (cx, cy, ratio, h) to (x1, y1, x2, y2).
- Parameters
bbox (Tensor) – Shape (n, 4) for bboxes.
- Returns
Converted bboxes.
- Return type
Tensor
- mmdet.structures.bbox.bbox_cxcywh_to_xyxy(bbox: Tensor) Tensor [source]¶
Convert bbox coordinates from (cx, cy, w, h) to (x1, y1, x2, y2).
- Parameters
bbox (Tensor) – Shape (n, 4) for bboxes.
- Returns
Converted bboxes.
- Return type
Tensor
- mmdet.structures.bbox.bbox_flip(bboxes: Tensor, img_shape: Tuple[int], direction: str = 'horizontal') Tensor [source]¶
Flip bboxes horizontally or vertically.
- Parameters
bboxes (Tensor) – Shape (…, 4*k)
img_shape (Tuple[int]) – Image shape.
direction (str) – Flip direction, options are “horizontal”, “vertical”, “diagonal”. Default: “horizontal”
- Returns
Flipped bboxes.
- Return type
Tensor
- mmdet.structures.bbox.bbox_mapping(bboxes: Tensor, img_shape: Tuple[int], scale_factor: Union[float, Tuple[float]], flip: bool, flip_direction: str = 'horizontal') Tensor [source]¶
Map bboxes from the original image scale to testing scale.
- mmdet.structures.bbox.bbox_mapping_back(bboxes: Tensor, img_shape: Tuple[int], scale_factor: Union[float, Tuple[float]], flip: bool, flip_direction: str = 'horizontal') Tensor [source]¶
Map bboxes from testing scale to original image scale.
- mmdet.structures.bbox.bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-06)[source]¶
Calculate overlap between two set of bboxes.
FP16 Contributed by https://github.com/open-mmlab/mmdetection/pull/4889 .. note:
Assume bboxes1 is M x 4, bboxes2 is N x 4, when mode is 'iou', there are some new generated variable when calculating IOU using bbox_overlaps function: 1) is_aligned is False area1: M x 1 area2: N x 1 lt: M x N x 2 rb: M x N x 2 wh: M x N x 2 overlap: M x N x 1 union: M x N x 1 ious: M x N x 1 Total memory: S = (9 x N x M + N + M) * 4 Byte, When using FP16, we can reduce: R = (9 x N x M + N + M) * 4 / 2 Byte R large than (N + M) * 4 * 2 is always true when N and M >= 1. Obviously, N + M <= N * M < 3 * N * M, when N >=2 and M >=2, N + 1 < 3 * N, when N or M is 1. Given M = 40 (ground truth), N = 400000 (three anchor boxes in per grid, FPN, R-CNNs), R = 275 MB (one times) A special case (dense detection), M = 512 (ground truth), R = 3516 MB = 3.43 GB When the batch size is B, reduce: B x R Therefore, CUDA memory runs out frequently. Experiments on GeForce RTX 2080Ti (11019 MiB): | dtype | M | N | Use | Real | Ideal | |:----:|:----:|:----:|:----:|:----:|:----:| | FP32 | 512 | 400000 | 8020 MiB | -- | -- | | FP16 | 512 | 400000 | 4504 MiB | 3516 MiB | 3516 MiB | | FP32 | 40 | 400000 | 1540 MiB | -- | -- | | FP16 | 40 | 400000 | 1264 MiB | 276MiB | 275 MiB | 2) is_aligned is True area1: N x 1 area2: N x 1 lt: N x 2 rb: N x 2 wh: N x 2 overlap: N x 1 union: N x 1 ious: N x 1 Total memory: S = 11 x N * 4 Byte When using FP16, we can reduce: R = 11 x N * 4 / 2 Byte So do the 'giou' (large than 'iou'). Time-wise, FP16 is generally faster than FP32. When gpu_assign_thr is not -1, it takes more time on cpu but not reduce memory. There, we can reduce half the memory and keep the speed.
If
is_aligned
isFalse
, then calculate the overlaps between each bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned pair of bboxes1 and bboxes2.- Parameters
bboxes1 (Tensor) – shape (B, m, 4) in <x1, y1, x2, y2> format or empty.
bboxes2 (Tensor) – shape (B, n, 4) in <x1, y1, x2, y2> format or empty. B indicates the batch dim, in shape (B1, B2, …, Bn). If
is_aligned
isTrue
, then m and n must be equal.mode (str) – “iou” (intersection over union), “iof” (intersection over foreground) or “giou” (generalized intersection over union). Default “iou”.
is_aligned (bool, optional) – If True, then m and n must be equal. Default False.
eps (float, optional) – A value added to the denominator for numerical stability. Default 1e-6.
- Returns
shape (m, n) if
is_aligned
is False else shape (m,)- Return type
Tensor
Example
>>> bboxes1 = torch.FloatTensor([ >>> [0, 0, 10, 10], >>> [10, 10, 20, 20], >>> [32, 32, 38, 42], >>> ]) >>> bboxes2 = torch.FloatTensor([ >>> [0, 0, 10, 20], >>> [0, 10, 10, 19], >>> [10, 10, 20, 20], >>> ]) >>> overlaps = bbox_overlaps(bboxes1, bboxes2) >>> assert overlaps.shape == (3, 3) >>> overlaps = bbox_overlaps(bboxes1, bboxes2, is_aligned=True) >>> assert overlaps.shape == (3, )
Example
>>> empty = torch.empty(0, 4) >>> nonempty = torch.FloatTensor([[0, 0, 10, 9]]) >>> assert tuple(bbox_overlaps(empty, nonempty).shape) == (0, 1) >>> assert tuple(bbox_overlaps(nonempty, empty).shape) == (1, 0) >>> assert tuple(bbox_overlaps(empty, empty).shape) == (0, 0)
- mmdet.structures.bbox.bbox_project(bboxes: Union[Tensor, ndarray], homography_matrix: Union[Tensor, ndarray], img_shape: Optional[Tuple[int, int]] = None) Union[Tensor, ndarray] [source]¶
Geometric transformation for bbox.
- Parameters
bboxes (Union[torch.Tensor, np.ndarray]) – Shape (n, 4) for bboxes.
homography_matrix (Union[torch.Tensor, np.ndarray]) – Shape (3, 3) for geometric transformation.
img_shape (Tuple[int, int], optional) – Image shape. Defaults to None.
- Returns
Converted bboxes.
- Return type
Union[torch.Tensor, np.ndarray]
- mmdet.structures.bbox.bbox_rescale(bboxes: Tensor, scale_factor: float = 1.0) Tensor [source]¶
Rescale bounding box w.r.t. scale_factor.
- Parameters
bboxes (Tensor) – Shape (n, 4) for bboxes or (n, 5) for rois
scale_factor (float) – rescale factor
- Returns
Rescaled bboxes.
- Return type
Tensor
- mmdet.structures.bbox.bbox_xyxy_to_cxcyah(bboxes: Tensor) Tensor [source]¶
Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, ratio, h).
- Parameters
bbox (Tensor) – Shape (n, 4) for bboxes.
- Returns
Converted bboxes.
- Return type
Tensor
- mmdet.structures.bbox.bbox_xyxy_to_cxcywh(bbox: Tensor) Tensor [source]¶
Convert bbox coordinates from (x1, y1, x2, y2) to (cx, cy, w, h).
- Parameters
bbox (Tensor) – Shape (n, 4) for bboxes.
- Returns
Converted bboxes.
- Return type
Tensor
- mmdet.structures.bbox.cat_boxes(data_list: List[Union[Tensor, BaseBoxes]], dim: int = 0) Union[Tensor, BaseBoxes] [source]¶
Concatenate boxes with type of tensor or box type.
- Parameters
data_list (List[Union[Tensor,
BaseBoxes
]]) –A list of tensors or box types need to be concatenated. dim (int): The dimension over which the box are concatenated.
Defaults to 0.
- Returns
obj`BaseBoxes`]: Concatenated results.
- Return type
Union[Tensor,
- mmdet.structures.bbox.convert_box_type(boxes: Union[ndarray, Tensor, BaseBoxes], *, src_type: Optional[Union[str, type]] = None, dst_type: Optional[Union[str, type]] = None) Union[ndarray, Tensor, BaseBoxes] [source]¶
Convert boxes from source type to destination type.
If
boxes
is a instance of BaseBoxes, thesrc_type
will be set as the type ofboxes
.- Parameters
boxes (np.ndarray or Tensor or
BaseBoxes
) – boxes need to convert.src_type (str or type, Optional) – source box type. Defaults to None.
dst_type (str or type, Optional) – destination box type. Defaults to None.
- Returns
Converted boxes. It’s type is consistent with the input’s type.
- Return type
Union[np.ndarray, Tensor,
BaseBoxes
]
- mmdet.structures.bbox.corner2bbox(corners: Tensor) Tensor [source]¶
Convert bbox coordinates from corners ((x1, y1), (x2, y1), (x1, y2), (x2, y2)) to (x1, y1, x2, y2).
- Parameters
corners (Tensor) – Shape (n*4, 2) for corners.
- Returns
Shape (n, 4) for bboxes.
- Return type
Tensor
- mmdet.structures.bbox.distance2bbox(points: Tensor, distance: Tensor, max_shape: Optional[Union[Sequence[int], Tensor, Sequence[Sequence[int]]]] = None) Tensor [source]¶
Decode distance prediction to bounding box.
- Parameters
points (Tensor) – Shape (B, N, 2) or (N, 2).
distance (Tensor) – Distance from the given point to 4 boundaries (left, top, right, bottom). Shape (B, N, 4) or (N, 4)
(Union[Sequence[int] (max_shape) – optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B.
Tensor – optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B.
Sequence[Sequence[int]]] – optional): Maximum bounds for boxes, specifies (H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B.
- :paramoptional): Maximum bounds for boxes, specifies
(H, W, C) or (H, W). If priors shape is (B, N, 4), then the max_shape should be a Sequence[Sequence[int]] and the length of max_shape should also be B.
- Returns
Boxes with shape (N, 4) or (B, N, 4)
- Return type
Tensor
- mmdet.structures.bbox.empty_box_as(boxes: Union[Tensor, BaseBoxes]) Union[Tensor, BaseBoxes] [source]¶
Generate empty box according to input ``boxes` type and device.
- mmdet.structures.bbox.find_inside_bboxes(bboxes: Tensor, img_h: int, img_w: int) Tensor [source]¶
Find bboxes as long as a part of bboxes is inside the image.
- Parameters
bboxes (Tensor) – Shape (N, 4).
img_h (int) – Image height.
img_w (int) – Image width.
- Returns
Index of the remaining bboxes.
- Return type
Tensor
- mmdet.structures.bbox.get_box_tensor(boxes: Union[Tensor, BaseBoxes]) Tensor [source]¶
Get tensor data from box type boxes.
- Parameters
boxes (Tensor or BaseBoxes) – boxes with type of tensor or box type. If its type is a tensor, the boxes will be directly returned. If its type is a box type, the boxes.tensor will be returned.
- Returns
boxes tensor.
- Return type
Tensor
- mmdet.structures.bbox.get_box_type(box_type: Union[str, type]) Tuple[str, type] [source]¶
Get both box type name and class.
- Parameters
box_type (str or type) – Single box type name or class.
- Returns
A tuple of box type name and class.
- Return type
Tuple[str, type]
- mmdet.structures.bbox.get_box_wh(boxes: Union[Tensor, BaseBoxes]) Tuple[Tensor, Tensor] [source]¶
Get the width and height of boxes with type of tensor or box type.
- Parameters
boxes (Tensor or
BaseBoxes
) – boxes with type of tensor or box type.- Returns
the width and height of boxes.
- Return type
Tuple[Tensor, Tensor]
- mmdet.structures.bbox.register_box(name: str, box_type: Optional[Type] = None, force: bool = False) Union[Type, Callable] [source]¶
Register a box type.
A record will be added to
bbox_types
, whose key is the box type name and value is the box type itself. Simultaneously, a reverse dictionary_box_type_to_name
will be updated. It can be used as a decorator or a normal function.- Parameters
name (str) – The name of box type.
bbox_type (type, Optional) – Box type class to be registered. Defaults to None.
force (bool) – Whether to override the existing box type with the same name. Defaults to False.
Examples
>>> from mmdet.structures.bbox import register_box >>> from mmdet.structures.bbox import BaseBoxes
>>> # as a decorator >>> @register_box('hbox') >>> class HorizontalBoxes(BaseBoxes): >>> pass
>>> # as a normal function >>> class RotatedBoxes(BaseBoxes): >>> pass >>> register_box('rbox', RotatedBoxes)
- mmdet.structures.bbox.register_box_converter(src_type: Union[str, type], dst_type: Union[str, type], converter: Optional[Callable] = None, force: bool = False) Callable [source]¶
Register a box converter.
A record will be added to
box_converter
, whose key is ‘{src_type_name}2{dst_type_name}’ and value is the convert function. It can be used as a decorator or a normal function.- Parameters
src_type (str or type) – source box type name or class.
dst_type (str or type) – destination box type name or class.
converter (Callable) – Convert function. Defaults to None.
force (bool) – Whether to override the existing box type with the same name. Defaults to False.
Examples
>>> from mmdet.structures.bbox import register_box_converter >>> # as a decorator >>> @register_box_converter('hbox', 'rbox') >>> def converter_A(boxes): >>> pass
>>> # as a normal function >>> def converter_B(boxes): >>> pass >>> register_box_converter('rbox', 'hbox', converter_B)
- mmdet.structures.bbox.roi2bbox(rois: Tensor) List[Tensor] [source]¶
Convert rois to bounding box format.
- Parameters
rois (Tensor) – RoIs with the shape (n, 5) where the first column indicates batch id of each RoI.
- Returns
Converted boxes of corresponding rois.
- Return type
List[Tensor]
- mmdet.structures.bbox.scale_boxes(boxes: Union[Tensor, BaseBoxes], scale_factor: Tuple[float, float]) Union[Tensor, BaseBoxes] [source]¶
Scale boxes with type of tensor or box type.
- mmdet.structures.bbox.stack_boxes(data_list: List[Union[Tensor, BaseBoxes]], dim: int = 0) Union[Tensor, BaseBoxes] [source]¶
Stack boxes with type of tensor or box type.
- Parameters
data_list (List[Union[Tensor,
BaseBoxes
]]) –A list of tensors or box types need to be stacked. dim (int): The dimension over which the box are stacked.
Defaults to 0.
- Returns
obj`BaseBoxes`]: Stacked results.
- Return type
Union[Tensor,
mask¶
- class mmdet.structures.mask.BaseInstanceMasks[source]¶
Base class for instance masks.
- abstract property areas¶
areas of each instance.
- Type
ndarray
- abstract classmethod cat(masks: Sequence[T]) T [source]¶
Concatenate a sequence of masks into one single mask instance.
- Parameters
masks (Sequence[T]) – A sequence of mask instances.
- Returns
Concatenated mask instance.
- Return type
T
- abstract crop(bbox)[source]¶
Crop each mask by the given bbox.
- Parameters
bbox (ndarray) – Bbox in format [x1, y1, x2, y2], shape (4, ).
- Returns
The cropped masks.
- Return type
- abstract crop_and_resize(bboxes, out_shape, inds, device, interpolation='bilinear', binarize=True)[source]¶
Crop and resize masks by the given bboxes.
This function is mainly used in mask targets computation. It firstly align mask to bboxes by assigned_inds, then crop mask by the assigned bbox and resize to the size of (mask_h, mask_w)
- Parameters
bboxes (Tensor) – Bboxes in format [x1, y1, x2, y2], shape (N, 4)
out_shape (tuple[int]) – Target (h, w) of resized mask
inds (ndarray) – Indexes to assign masks to each bbox, shape (N,) and values should be between [0, num_masks - 1].
device (str) – Device of bboxes
interpolation (str) – See mmcv.imresize
binarize (bool) – if True fractional values are rounded to 0 or 1 after the resize operation. if False and unsupported an error will be raised. Defaults to True.
- Returns
the cropped and resized masks.
- Return type
- abstract flip(flip_direction='horizontal')[source]¶
Flip masks alone the given direction.
- Parameters
flip_direction (str) – Either ‘horizontal’ or ‘vertical’.
- Returns
The flipped masks.
- Return type
- get_bboxes(dst_type='hbb')[source]¶
Get the certain type boxes from masks.
Please refer to
mmdet.structures.bbox.box_type
for more details of the box type.- Parameters
dst_type – Destination box type.
- Returns
Certain type boxes.
- Return type
BaseBoxes
- abstract pad(out_shape, pad_val)[source]¶
Pad masks to the given size of (h, w).
- Parameters
out_shape (tuple[int]) – Target (h, w) of padded mask.
pad_val (int) – The padded value.
- Returns
The padded masks.
- Return type
- abstract rescale(scale, interpolation='nearest')[source]¶
Rescale masks as large as possible while keeping the aspect ratio. For details can refer to mmcv.imrescale.
- Parameters
scale (tuple[int]) – The maximum size (h, w) of rescaled mask.
interpolation (str) – Same as
mmcv.imrescale()
.
- Returns
The rescaled masks.
- Return type
- abstract resize(out_shape, interpolation='nearest')[source]¶
Resize masks to the given out_shape.
- Parameters
out_shape – Target (h, w) of resized mask.
interpolation (str) – See
mmcv.imresize()
.
- Returns
The resized masks.
- Return type
- abstract rotate(out_shape, angle, center=None, scale=1.0, border_value=0)[source]¶
Rotate the masks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
angle (int | float) – Rotation angle in degrees. Positive values mean counter-clockwise rotation.
center (tuple[float], optional) – Center point (w, h) of the rotation in source image. If not specified, the center of the image will be used.
scale (int | float) – Isotropic scale factor.
border_value (int | float) – Border value. Default 0 for masks.
- Returns
Rotated masks.
- shear(out_shape, magnitude, direction='horizontal', border_value=0, interpolation='bilinear')[source]¶
Shear the masks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
magnitude (int | float) – The magnitude used for shear.
direction (str) – The shear direction, either “horizontal” or “vertical”.
border_value (int | tuple[int]) – Value used in case of a constant border. Default 0.
interpolation (str) – Same as in
mmcv.imshear()
.
- Returns
Sheared masks.
- Return type
ndarray
- abstract to_ndarray()[source]¶
Convert masks to the format of ndarray.
- Returns
Converted masks in the format of ndarray.
- Return type
ndarray
- abstract to_tensor(dtype, device)[source]¶
Convert masks to the format of Tensor.
- Parameters
dtype (str) – Dtype of converted mask.
device (torch.device) – Device of converted masks.
- Returns
Converted masks in the format of Tensor.
- Return type
Tensor
- abstract translate(out_shape, offset, direction='horizontal', border_value=0, interpolation='bilinear')[source]¶
Translate the masks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
offset (int | float) – The offset for translate.
direction (str) – The translate direction, either “horizontal” or “vertical”.
border_value (int | float) – Border value. Default 0.
interpolation (str) – Same as
mmcv.imtranslate()
.
- Returns
Translated masks.
- class mmdet.structures.mask.BitmapMasks(masks, height, width)[source]¶
This class represents masks in the form of bitmaps.
- Parameters
masks (ndarray) – ndarray of masks in shape (N, H, W), where N is the number of objects.
height (int) – height of masks
width (int) – width of masks
Example
>>> from mmdet.data_elements.mask.structures import * # NOQA >>> num_masks, H, W = 3, 32, 32 >>> rng = np.random.RandomState(0) >>> masks = (rng.rand(num_masks, H, W) > 0.1).astype(np.int64) >>> self = BitmapMasks(masks, height=H, width=W)
>>> # demo crop_and_resize >>> num_boxes = 5 >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes) >>> out_shape = (14, 14) >>> inds = torch.randint(0, len(self), size=(num_boxes,)) >>> device = 'cpu' >>> interpolation = 'bilinear' >>> new = self.crop_and_resize( ... bboxes, out_shape, inds, device, interpolation) >>> assert len(new) == num_boxes >>> assert new.height, new.width == out_shape
- property areas¶
- classmethod cat(masks: Sequence[T]) T [source]¶
Concatenate a sequence of masks into one single mask instance.
- Parameters
masks (Sequence[BitmapMasks]) – A sequence of mask instances.
- Returns
Concatenated mask instance.
- Return type
- crop_and_resize(bboxes, out_shape, inds, device='cpu', interpolation='bilinear', binarize=True)[source]¶
- classmethod random(num_masks=3, height=32, width=32, dtype=<class 'numpy.uint8'>, rng=None)[source]¶
Generate random bitmap masks for demo / testing purposes.
Example
>>> from mmdet.data_elements.mask.structures import BitmapMasks >>> self = BitmapMasks.random() >>> print('self = {}'.format(self)) self = BitmapMasks(num_masks=3, height=32, width=32)
- rotate(out_shape, angle, center=None, scale=1.0, border_value=0, interpolation='bilinear')[source]¶
Rotate the BitmapMasks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
angle (int | float) – Rotation angle in degrees. Positive values mean counter-clockwise rotation.
center (tuple[float], optional) – Center point (w, h) of the rotation in source image. If not specified, the center of the image will be used.
scale (int | float) – Isotropic scale factor.
border_value (int | float) – Border value. Default 0 for masks.
interpolation (str) – Same as in
mmcv.imrotate()
.
- Returns
Rotated BitmapMasks.
- Return type
- shear(out_shape, magnitude, direction='horizontal', border_value=0, interpolation='bilinear')[source]¶
Shear the BitmapMasks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
magnitude (int | float) – The magnitude used for shear.
direction (str) – The shear direction, either “horizontal” or “vertical”.
border_value (int | tuple[int]) – Value used in case of a constant border.
interpolation (str) – Same as in
mmcv.imshear()
.
- Returns
The sheared masks.
- Return type
- translate(out_shape, offset, direction='horizontal', border_value=0, interpolation='bilinear')[source]¶
Translate the BitmapMasks.
- Parameters
out_shape (tuple[int]) – Shape for output mask, format (h, w).
offset (int | float, tuple) – The offset for translate.
direction (str) – The translate direction, either “horizontal” or “vertical” or “both” in which case offset is tuple for (horizontal, vertical)
border_value (int | float) – Border value. Default 0 for masks.
interpolation (str) – Same as
mmcv.imtranslate()
.
- Returns
Translated BitmapMasks.
- Return type
Example
>>> from mmdet.data_elements.mask.structures import BitmapMasks >>> self = BitmapMasks.random(dtype=np.uint8) >>> out_shape = (32, 32) >>> offset = 4 >>> direction = 'horizontal' >>> border_value = 0 >>> interpolation = 'bilinear' >>> # Note, There seem to be issues when: >>> # * the mask dtype is not supported by cv2.AffineWarp >>> new = self.translate(out_shape, offset, direction, >>> border_value, interpolation) >>> assert len(new) == len(self) >>> assert new.height, new.width == out_shape
- class mmdet.structures.mask.PolygonMasks(masks, height, width)[source]¶
This class represents masks in the form of polygons.
Polygons is a list of three levels. The first level of the list corresponds to objects, the second level to the polys that compose the object, the third level to the poly coordinates
- Parameters
masks (list[list[ndarray]]) – The first level of the list corresponds to objects, the second level to the polys that compose the object, the third level to the poly coordinates
height (int) – height of masks
width (int) – width of masks
Example
>>> from mmdet.data_elements.mask.structures import * # NOQA >>> masks = [ >>> [ np.array([0, 0, 10, 0, 10, 10., 0, 10, 0, 0]) ] >>> ] >>> height, width = 16, 16 >>> self = PolygonMasks(masks, height, width)
>>> # demo translate >>> new = self.translate((16, 16), 4., direction='horizontal') >>> assert np.all(new.masks[0][0][1::2] == masks[0][0][1::2]) >>> assert np.all(new.masks[0][0][0::2] == masks[0][0][0::2] + 4)
>>> # demo crop_and_resize >>> num_boxes = 3 >>> bboxes = np.array([[0, 0, 30, 10.0]] * num_boxes) >>> out_shape = (16, 16) >>> inds = torch.randint(0, len(self), size=(num_boxes,)) >>> device = 'cpu' >>> interpolation = 'bilinear' >>> new = self.crop_and_resize( ... bboxes, out_shape, inds, device, interpolation) >>> assert len(new) == num_boxes >>> assert new.height, new.width == out_shape
- property areas¶
Compute areas of masks.
This func is modified from detectron2. The function only works with Polygons using the shoelace formula.
- Returns
areas of each instance
- Return type
ndarray
- classmethod cat(masks: Sequence[T]) T [source]¶
Concatenate a sequence of masks into one single mask instance.
- Parameters
masks (Sequence[PolygonMasks]) – A sequence of mask instances.
- Returns
Concatenated mask instance.
- Return type
- crop_and_resize(bboxes, out_shape, inds, device='cpu', interpolation='bilinear', binarize=True)[source]¶
- classmethod random(num_masks=3, height=32, width=32, n_verts=5, dtype=<class 'numpy.float32'>, rng=None)[source]¶
Generate random polygon masks for demo / testing purposes.
Adapted from [1]_
References
- 1
https://gitlab.kitware.com/computer-vision/kwimage/-/blob/928cae35ca8/kwimage/structs/polygon.py#L379 # noqa: E501
Example
>>> from mmdet.data_elements.mask.structures import PolygonMasks >>> self = PolygonMasks.random() >>> print('self = {}'.format(self))
- shear(out_shape, magnitude, direction='horizontal', border_value=0, interpolation='bilinear')[source]¶
- translate(out_shape, offset, direction='horizontal', border_value=None, interpolation=None)[source]¶
Translate the PolygonMasks.
Example
>>> self = PolygonMasks.random(dtype=np.int64) >>> out_shape = (self.height, self.width) >>> new = self.translate(out_shape, 4., direction='horizontal') >>> assert np.all(new.masks[0][0][1::2] == self.masks[0][0][1::2]) >>> assert np.all(new.masks[0][0][0::2] == self.masks[0][0][0::2] + 4) # noqa: E501
- mmdet.structures.mask.bitmap_to_polygon(bitmap)[source]¶
Convert masks from the form of bitmaps to polygons.
- Parameters
bitmap (ndarray) – masks in bitmap representation.
- Returns
the converted mask in polygon representation. bool: whether the mask has holes.
- Return type
list[ndarray]
- mmdet.structures.mask.encode_mask_results(mask_results)[source]¶
Encode bitmap mask to RLE code.
- Parameters
mask_results (list) – bitmap mask results.
- Returns
RLE encoded mask.
- Return type
list | tuple
- mmdet.structures.mask.mask2bbox(masks)[source]¶
Obtain tight bounding boxes of binary masks.
- Parameters
masks (Tensor) – Binary mask of shape (n, h, w).
- Returns
Bboxe with shape (n, 4) of positive region in binary mask.
- Return type
Tensor
- mmdet.structures.mask.mask_target(pos_proposals_list, pos_assigned_gt_inds_list, gt_masks_list, cfg)[source]¶
Compute mask target for positive proposals in multiple images.
- Parameters
pos_proposals_list (list[Tensor]) – Positive proposals in multiple images, each has shape (num_pos, 4).
pos_assigned_gt_inds_list (list[Tensor]) – Assigned GT indices for each positive proposals, each has shape (num_pos,).
gt_masks_list (list[
BaseInstanceMasks
]) – Ground truth masks of each image.cfg (dict) – Config dict that specifies the mask size.
- Returns
Mask target of each image, has shape (num_pos, w, h).
- Return type
Tensor
Example
>>> from mmengine.config import Config >>> import mmdet >>> from mmdet.data_elements.mask import BitmapMasks >>> from mmdet.data_elements.mask.mask_target import * >>> H, W = 17, 18 >>> cfg = Config({'mask_size': (13, 14)}) >>> rng = np.random.RandomState(0) >>> # Positive proposals (tl_x, tl_y, br_x, br_y) for each image >>> pos_proposals_list = [ >>> torch.Tensor([ >>> [ 7.2425, 5.5929, 13.9414, 14.9541], >>> [ 7.3241, 3.6170, 16.3850, 15.3102], >>> ]), >>> torch.Tensor([ >>> [ 4.8448, 6.4010, 7.0314, 9.7681], >>> [ 5.9790, 2.6989, 7.4416, 4.8580], >>> [ 0.0000, 0.0000, 0.1398, 9.8232], >>> ]), >>> ] >>> # Corresponding class index for each proposal for each image >>> pos_assigned_gt_inds_list = [ >>> torch.LongTensor([7, 0]), >>> torch.LongTensor([5, 4, 1]), >>> ] >>> # Ground truth mask for each true object for each image >>> gt_masks_list = [ >>> BitmapMasks(rng.rand(8, H, W), height=H, width=W), >>> BitmapMasks(rng.rand(6, H, W), height=H, width=W), >>> ] >>> mask_targets = mask_target( >>> pos_proposals_list, pos_assigned_gt_inds_list, >>> gt_masks_list, cfg) >>> assert mask_targets.shape == (5,) + cfg['mask_size']
- mmdet.structures.mask.polygon_to_bitmap(polygons, height, width)[source]¶
Convert masks from the form of polygons to bitmaps.
- Parameters
polygons (list[ndarray]) – masks in polygon representation
height (int) – mask height
width (int) – mask width
- Returns
the converted masks in bitmap representation
- Return type
ndarray
- mmdet.structures.mask.split_combined_polys(polys, poly_lens, polys_per_mask)[source]¶
Split the combined 1-D polys into masks.
A mask is represented as a list of polys, and a poly is represented as a 1-D array. In dataset, all masks are concatenated into a single 1-D tensor. Here we need to split the tensor into original representations.
- Parameters
polys (list) – a list (length = image num) of 1-D tensors
poly_lens (list) – a list (length = image num) of poly length
polys_per_mask (list) – a list (length = image num) of poly number of each mask
- Returns
a list (length = image num) of list (length = mask num) of list (length = poly num) of numpy array.
- Return type
list
mmdet.testing¶
- mmdet.testing.demo_mm_inputs(batch_size=2, image_shapes=(3, 128, 128), num_items=None, num_classes=10, sem_seg_output_strides=1, with_mask=False, with_semantic=False, use_box_type=False, device='cpu', texts=None, custom_entities=False)[source]¶
Create a superset of inputs needed to run test or train batches.
- Parameters
batch_size (int) – batch size. Defaults to 2.
image_shapes (List[tuple], Optional) – image shape. Defaults to (3, 128, 128)
num_items (None | List[int]) – specifies the number of boxes in each batch item. Default to None.
num_classes (int) – number of different labels a box might have. Defaults to 10.
with_mask (bool) – Whether to return mask annotation. Defaults to False.
with_semantic (bool) – whether to return semantic. Defaults to False.
device (str) – Destination device type. Defaults to cpu.
- mmdet.testing.demo_mm_proposals(image_shapes, num_proposals, device='cpu')[source]¶
Create a list of fake proposals.
- Parameters
image_shapes (list[tuple[int]]) – Batch image shapes.
num_proposals (int) – The number of fake proposals.
- mmdet.testing.demo_mm_sampling_results(proposals_list, batch_gt_instances, batch_gt_instances_ignore=None, assigner_cfg=None, sampler_cfg=None, feats=None)[source]¶
Create sample results that can be passed to BBoxHead.get_targets.
- mmdet.testing.demo_track_inputs(batch_size=1, num_frames=2, key_frames_inds=None, image_shapes=(3, 128, 128), num_items=None, num_classes=1, with_mask=False, with_semantic=False)[source]¶
Create a superset of inputs needed to run test or train batches.
- Parameters
batch_size (int) – batch size. Default to 1.
num_frames (int) – The number of frames.
key_frames_inds (List) – The indices of key frames.
image_shapes (List[tuple], Optional) – image shape. Default to (3, 128, 128)
num_items (None | List[int]) – specifies the number of boxes in each batch item. Default to None.
num_classes (int) – number of different labels a box might have. Default to 1.
with_mask (bool) – Whether to return mask annotation. Defaults to False.
with_semantic (bool) – whether to return semantic. Default to False.
- mmdet.testing.get_detector_cfg(fname)[source]¶
Grab configs necessary to create a detector.
These are deep copied to allow for safe modification of parameters without influencing other tests.
- mmdet.testing.get_roi_head_cfg(fname)[source]¶
Grab configs necessary to create a roi_head.
These are deep copied to allow for safe modification of parameters without influencing other tests.
- mmdet.testing.random_boxes(num=1, scale=1, rng=None)[source]¶
Simple version of
kwimage.Boxes.random
:returns: shape (n, 4) in x1, y1, x2, y2 format. :rtype: TensorReferences
https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390 # noqa: E501
Example
>>> num = 3 >>> scale = 512 >>> rng = 0 >>> boxes = random_boxes(num, scale, rng) >>> print(boxes) tensor([[280.9925, 278.9802, 308.6148, 366.1769], [216.9113, 330.6978, 224.0446, 456.5878], [405.3632, 196.3221, 493.3953, 270.7942]])
mmdet.visualization¶
- class mmdet.visualization.DetLocalVisualizer(name: str = 'visualizer', image: Optional[ndarray] = None, vis_backends: Optional[Dict] = None, save_dir: Optional[str] = None, bbox_color: Optional[Union[str, Tuple[int]]] = None, text_color: Optional[Union[str, Tuple[int]]] = (200, 200, 200), mask_color: Optional[Union[str, Tuple[int]]] = None, line_width: Union[int, float] = 3, alpha: float = 0.8)[source]¶
MMDetection Local Visualizer.
- Parameters
name (str) – Name of the instance. Defaults to ‘visualizer’.
image (np.ndarray, optional) – the origin image to draw. The format should be RGB. Defaults to None.
vis_backends (list, optional) – Visual backend config list. Defaults to None.
save_dir (str, optional) – Save file dir for all storage backends. If it is None, the backend storage will not save any data.
bbox_color (str, tuple(int), optional) – Color of bbox lines. The tuple of color should be in BGR order. Defaults to None.
text_color (str, tuple(int), optional) – Color of texts. The tuple of color should be in BGR order. Defaults to (200, 200, 200).
mask_color (str, tuple(int), optional) – Color of masks. The tuple of color should be in BGR order. Defaults to None.
line_width (int, float) – The linewidth of lines. Defaults to 3.
alpha (int, float) – The transparency of bboxes or mask. Defaults to 0.8.
Examples
>>> import numpy as np >>> import torch >>> from mmengine.structures import InstanceData >>> from mmdet.structures import DetDataSample >>> from mmdet.visualization import DetLocalVisualizer
>>> det_local_visualizer = DetLocalVisualizer() >>> image = np.random.randint(0, 256, ... size=(10, 12, 3)).astype('uint8') >>> gt_instances = InstanceData() >>> gt_instances.bboxes = torch.Tensor([[1, 2, 2, 5]]) >>> gt_instances.labels = torch.randint(0, 2, (1,)) >>> gt_det_data_sample = DetDataSample() >>> gt_det_data_sample.gt_instances = gt_instances >>> det_local_visualizer.add_datasample('image', image, ... gt_det_data_sample) >>> det_local_visualizer.add_datasample( ... 'image', image, gt_det_data_sample, ... out_file='out_file.jpg') >>> det_local_visualizer.add_datasample( ... 'image', image, gt_det_data_sample, ... show=True) >>> pred_instances = InstanceData() >>> pred_instances.bboxes = torch.Tensor([[2, 4, 4, 8]]) >>> pred_instances.labels = torch.randint(0, 2, (1,)) >>> pred_det_data_sample = DetDataSample() >>> pred_det_data_sample.pred_instances = pred_instances >>> det_local_visualizer.add_datasample('image', image, ... gt_det_data_sample, ... pred_det_data_sample)
- add_datasample(name: str, image: ndarray, data_sample: Optional[DetDataSample] = None, draw_gt: bool = True, draw_pred: bool = True, show: bool = False, wait_time: float = 0, out_file: Optional[str] = None, pred_score_thr: float = 0.3, step: int = 0) None [source]¶
Draw datasample and save to all backends.
If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the ground truth and the right image is the prediction. - If
show
is True, all storage backends are ignored, and the images will be displayed in a local window. - Ifout_file
is specified, the drawn image will be saved toout_file
. t is usually used when the display is not available.- Parameters
name (str) – The image identifier.
image (np.ndarray) – The image to draw.
data_sample (
DetDataSample
, optional) – A data sample that contain annotations and predictions. Defaults to None.draw_gt (bool) – Whether to draw GT DetDataSample. Default to True.
draw_pred (bool) – Whether to draw Prediction DetDataSample. Defaults to True.
show (bool) – Whether to display the drawn image. Default to False.
wait_time (float) – The interval of show (s). Defaults to 0.
out_file (str) – Path to output file. Defaults to None.
pred_score_thr (float) – The threshold to visualize the bboxes and masks. Defaults to 0.3.
step (int) – Global step value to record. Defaults to 0.
- class mmdet.visualization.TrackLocalVisualizer(name: str = 'visualizer', image: Optional[ndarray] = None, vis_backends: Optional[Dict] = None, save_dir: Optional[str] = None, line_width: Union[int, float] = 3, alpha: float = 0.8)[source]¶
Tracking Local Visualizer for the MOT, VIS tasks.
- Parameters
name (str) – Name of the instance. Defaults to ‘visualizer’.
image (np.ndarray, optional) – the origin image to draw. The format should be RGB. Defaults to None.
vis_backends (list, optional) – Visual backend config list. Defaults to None.
save_dir (str, optional) – Save file dir for all storage backends. If it is None, the backend storage will not save any data.
line_width (int, float) – The linewidth of lines. Defaults to 3.
alpha (int, float) – The transparency of bboxes or mask. Defaults to 0.8.
- add_datasample(name: str, image: ndarray, data_sample: DetDataSample = None, draw_gt: bool = True, draw_pred: bool = True, show: bool = False, wait_time: int = 0, out_file: Optional[str] = None, pred_score_thr: float = 0.3, step: int = 0) None [source]¶
Draw datasample and save to all backends.
If GT and prediction are plotted at the same time, they are
displayed in a stitched image where the left image is the ground truth and the right image is the prediction. - If
show
is True, all storage backends are ignored, and the images will be displayed in a local window. - Ifout_file
is specified, the drawn image will be saved toout_file
. t is usually used when the display is not available. :param name: The image identifier. :type name: str :param image: The image to draw. :type image: np.ndarray :param data_sample: A datasample that contain annotations and predictions. Defaults to None.
- Parameters
draw_gt (bool) – Whether to draw GT TrackDataSample. Default to True.
draw_pred (bool) – Whether to draw Prediction TrackDataSample. Defaults to True.
show (bool) – Whether to display the drawn image. Default to False.
wait_time (int) – The interval of show (s). Defaults to 0.
out_file (str) – Path to output file. Defaults to None.
pred_score_thr (float) – The threshold to visualize the bboxes and masks. Defaults to 0.3.
step (int) – Global step value to record. Defaults to 0.
- mmdet.visualization.get_palette(palette: Union[List[tuple], str, tuple], num_classes: int) List[Tuple[int]] [source]¶
Get palette from various inputs.
- Parameters
palette (list[tuple] | str | tuple) – palette inputs.
num_classes (int) – the number of classes.
- Returns
A list of color tuples.
- Return type
list[tuple[int]]
mmdet.utils¶
- class mmdet.utils.AvoidOOM(to_cpu=True, test=False)[source]¶
Try to convert inputs to FP16 and CPU if got a PyTorch’s CUDA Out of Memory error. It will do the following steps:
First retry after calling torch.cuda.empty_cache().
If that still fails, it will then retry by converting inputs
to FP16.
If that still fails trying to convert inputs to CPUs.
In this case, it expects the function to dispatch to CPU implementation.
- Parameters
to_cpu (bool) – Whether to convert outputs to CPU if get an OOM error. This will slow down the code significantly. Defaults to True.
test (bool) – Skip _ignore_torch_cuda_oom operate that can use lightweight data in unit test, only used in test unit. Defaults to False.
Examples
>>> from mmdet.utils.memory import AvoidOOM >>> AvoidCUDAOOM = AvoidOOM() >>> output = AvoidOOM.retry_if_cuda_oom( >>> some_torch_function)(input1, input2) >>> # To use as a decorator >>> # from mmdet.utils import AvoidCUDAOOM >>> @AvoidCUDAOOM.retry_if_cuda_oom >>> def function(*args, **kwargs): >>> return None
Note
- The output may be on CPU even if inputs are on GPU. Processing
on CPU will slow down the code significantly.
- When converting inputs to CPU, it will only look at each argument
and check if it has .device and .to for conversion. Nested structures of tensors are not supported.
- Since the function might be called more than once, it has to be
stateless.
- retry_if_cuda_oom(func)[source]¶
Makes a function retry itself after encountering pytorch’s CUDA OOM error.
The implementation logic is referred to https://github.com/facebookresearch/detectron2/blob/main/detectron2/utils/memory.py
- Parameters
func – a stateless callable that takes tensor-like objects as arguments.
- Returns
a callable which retries func if OOM is encountered.
- Return type
func
- mmdet.utils.all_reduce_dict(py_dict, op='sum', group=None, to_float=True)[source]¶
Apply all reduce function for python dict object.
The code is modified from https://github.com/Megvii- BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py.
NOTE: make sure that py_dict in different ranks has the same keys and the values should be in the same shape. Currently only supports nccl backend.
- Parameters
py_dict (dict) – Dict to be applied all reduce op.
op (str) – Operator, could be ‘sum’ or ‘mean’. Default: ‘sum’
group (
torch.distributed.group
, optional) – Distributed group, Default: None.to_float (bool) – Whether to convert all values of dict to float. Default: True.
- Returns
reduced python dict object.
- Return type
OrderedDict
- mmdet.utils.allreduce_grads(params, coalesce=True, bucket_size_mb=-1)[source]¶
Allreduce gradients.
- Parameters
params (list[torch.Parameters]) – List of parameters of a model
coalesce (bool, optional) – Whether allreduce parameters as a whole. Defaults to True.
bucket_size_mb (int, optional) – Size of bucket, the unit is MB. Defaults to -1.
- mmdet.utils.compat_cfg(cfg)[source]¶
This function would modify some filed to keep the compatibility of config.
For example, it will move some args which will be deprecated to the correct fields.
- mmdet.utils.find_latest_checkpoint(path, suffix='pth')[source]¶
Find the latest checkpoint from the working directory.
- Parameters
path (str) – The path to find checkpoints.
suffix (str) – File extension. Defaults to pth.
- Returns
File path of the latest checkpoint.
- Return type
latest_path(str | None)
References
- 1
https://github.com/microsoft/SoftTeacher /blob/main/ssod/utils/patch.py
- mmdet.utils.get_test_pipeline_cfg(cfg: Union[str, ConfigDict]) ConfigDict [source]¶
Get the test dataset pipeline from entire config.
- Parameters
cfg (str or
ConfigDict
) – the entire config. Can be a config file or aConfigDict
.- Returns
the config of test dataset.
- Return type
ConfigDict
- mmdet.utils.imshow_mot_errors(*args, backend: str = 'cv2', **kwargs)[source]¶
Show the wrong tracks on the input image.
- Parameters
backend (str, optional) – Backend of visualization. Defaults to ‘cv2’.
- mmdet.utils.log_img_scale(img_scale, shape_order='hw', skip_square=False)[source]¶
Log image size.
- Parameters
img_scale (tuple) – Image size to be logged.
shape_order (str, optional) – The order of image shape. ‘hw’ for (height, width) and ‘wh’ for (width, height). Defaults to ‘hw’.
skip_square (bool, optional) – Whether to skip logging for square img_scale. Defaults to False.
- Returns
Whether to have done logging.
- Return type
bool
- mmdet.utils.register_all_modules(init_default_scope: bool = True) None [source]¶
Register all modules in mmdet into the registries.
- Parameters
init_default_scope (bool) – Whether initialize the mmdet default scope. When init_default_scope=True, the global default scope will be set to mmdet, and all registries will build modules from mmdet’s registry node. To understand more about the registry, please refer to https://github.com/vbti-development/onedl-mmengine/blob/main/docs/en/tutorials/registry.md Defaults to True.
- mmdet.utils.replace_cfg_vals(ori_cfg)[source]¶
Replace the string “${key}” with the corresponding value.
Replace the “${key}” with the value of ori_cfg.key in the config. And support replacing the chained ${key}. Such as, replace “${key0.key1}” with the value of cfg.key0.key1. Code is modified from `vars.py < https://github.com/microsoft/SoftTeacher/blob/main/ssod/utils/vars.py>`_ # noqa: E501
- Parameters
ori_cfg (mmengine.config.Config) – The origin config with “${key}” generated from a file.
- Returns
The config with “${key}” replaced by the corresponding value.
- Return type
updated_cfg [mmengine.config.Config]
- mmdet.utils.setup_cache_size_limit_of_dynamo()[source]¶
Setup cache size limit of dynamo.
Note: Due to the dynamic shape of the loss calculation and post-processing parts in the object detection algorithm, these functions must be compiled every time they are run. Setting a large value for torch._dynamo.config.cache_size_limit may result in repeated compilation, which can slow down training and testing speed. Therefore, we need to set the default value of cache_size_limit smaller. An empirical value is 4.
- mmdet.utils.split_batch(img, img_metas, kwargs)[source]¶
Split data_batch by tags.
Code is modified from <https://github.com/microsoft/SoftTeacher/blob/main/ssod/utils/structure_utils.py> # noqa: E501
- Parameters
img (Tensor) – of shape (N, C, H, W) encoding input images. Typically these should be mean centered and std scaled.
img_metas (list[dict]) – List of image info dict where each dict has: ‘img_shape’, ‘scale_factor’, ‘flip’, and may also contain ‘filename’, ‘ori_shape’, ‘pad_shape’, and ‘img_norm_cfg’. For details on the values of these keys, see
mmdet.datasets.pipelines.Collect
.kwargs (dict) – Specific to concrete implementation.
- Returns
- a dict that data_batch split by tags,
such as ‘sup’, ‘unsup_teacher’, and ‘unsup_student’.
- Return type
data_groups (dict)
- mmdet.utils.sync_random_seed(seed=None, device='cuda')[source]¶
Make sure different ranks share the same seed.
All workers must call this function, otherwise it will deadlock. This method is generally used in DistributedSampler, because the seed should be identical across all processes in the distributed group.
In distributed sampling, different ranks should sample non-overlapped data in the dataset. Therefore, this function is used to make sure that each rank shuffles the data indices in the same order based on the same seed. Then different ranks could use different indices to select non-overlapped data from the same data list.
- Parameters
seed (int, Optional) – The seed. Default to None.
device (str) – The device where the seed will be put on. Default to ‘cuda’.
- Returns
Seed to be used.
- Return type
int
- mmdet.utils.update_data_root(cfg, logger=None)[source]¶
Update data root according to env MMDET_DATASETS.
If set env MMDET_DATASETS, update cfg.data_root according to MMDET_DATASETS. Otherwise, using cfg.data_root as default.
- Parameters
cfg (
Config
) – The model config need to modifylogger (logging.Logger | str | None) – the way to print msg