Shortcuts

Source code for mmdet.models.detectors.grounding_dino

# Copyright (c) OpenMMLab. All rights reserved.
import copy
import re
import warnings
from typing import Dict, Optional, Tuple, Union

import torch
import torch.nn as nn
from mmengine.runner.amp import autocast
from torch import Tensor

from mmdet.registry import MODELS
from mmdet.structures import OptSampleList, SampleList
from mmdet.utils import ConfigType
from ..layers import SinePositionalEncoding
from ..layers.transformer.grounding_dino_layers import (
    GroundingDinoTransformerDecoder, GroundingDinoTransformerEncoder)
from .dino import DINO
from .glip import (create_positive_map, create_positive_map_label_to_token,
                   run_ner)


def clean_label_name(name: str) -> str:
    name = re.sub(r'\(.*\)', '', name)
    name = re.sub(r'_', ' ', name)
    name = re.sub(r'  ', ' ', name)
    return name


def chunks(lst: list, n: int) -> list:
    """Yield successive n-sized chunks from lst."""
    all_ = []
    for i in range(0, len(lst), n):
        data_index = lst[i:i + n]
        all_.append(data_index)
    counter = 0
    for i in all_:
        counter += len(i)
    assert (counter == len(lst))

    return all_


[docs]@MODELS.register_module() class GroundingDINO(DINO): """Implementation of `Grounding DINO: Marrying DINO with Grounded Pre- Training for Open-Set Object Detection. <https://arxiv.org/abs/2303.05499>`_ Code is modified from the `official github repo <https://github.com/IDEA-Research/GroundingDINO>`_. """ def __init__(self, language_model, *args, use_autocast=False, **kwargs) -> None: self.language_model_cfg = language_model self._special_tokens = '. ' self.use_autocast = use_autocast super().__init__(*args, **kwargs) def _init_layers(self) -> None: """Initialize layers except for backbone, neck and bbox_head.""" self.positional_encoding = SinePositionalEncoding( **self.positional_encoding) self.encoder = GroundingDinoTransformerEncoder(**self.encoder) self.decoder = GroundingDinoTransformerDecoder(**self.decoder) self.embed_dims = self.encoder.embed_dims self.query_embedding = nn.Embedding(self.num_queries, self.embed_dims) num_feats = self.positional_encoding.num_feats assert num_feats * 2 == self.embed_dims, \ f'embed_dims should be exactly 2 times of num_feats. ' \ f'Found {self.embed_dims} and {num_feats}.' self.level_embed = nn.Parameter( torch.Tensor(self.num_feature_levels, self.embed_dims)) self.memory_trans_fc = nn.Linear(self.embed_dims, self.embed_dims) self.memory_trans_norm = nn.LayerNorm(self.embed_dims) # text modules self.language_model = MODELS.build(self.language_model_cfg) self.text_feat_map = nn.Linear( self.language_model.language_backbone.body.language_dim, self.embed_dims, bias=True)
[docs] def init_weights(self) -> None: """Initialize weights for Transformer and other components.""" super().init_weights() nn.init.constant_(self.text_feat_map.bias.data, 0) nn.init.xavier_uniform_(self.text_feat_map.weight.data)
def to_enhance_text_prompts(self, original_caption, enhanced_text_prompts): caption_string = '' tokens_positive = [] for idx, word in enumerate(original_caption): if word in enhanced_text_prompts: enhanced_text_dict = enhanced_text_prompts[word] if 'prefix' in enhanced_text_dict: caption_string += enhanced_text_dict['prefix'] start_i = len(caption_string) if 'name' in enhanced_text_dict: caption_string += enhanced_text_dict['name'] else: caption_string += word end_i = len(caption_string) tokens_positive.append([[start_i, end_i]]) if 'suffix' in enhanced_text_dict: caption_string += enhanced_text_dict['suffix'] else: tokens_positive.append( [[len(caption_string), len(caption_string) + len(word)]]) caption_string += word caption_string += self._special_tokens return caption_string, tokens_positive def to_plain_text_prompts(self, original_caption): caption_string = '' tokens_positive = [] for idx, word in enumerate(original_caption): tokens_positive.append( [[len(caption_string), len(caption_string) + len(word)]]) caption_string += word caption_string += self._special_tokens return caption_string, tokens_positive
[docs] def get_tokens_and_prompts( self, original_caption: Union[str, list, tuple], custom_entities: bool = False, enhanced_text_prompts: Optional[ConfigType] = None ) -> Tuple[dict, str, list]: """Get the tokens positive and prompts for the caption.""" if isinstance(original_caption, (list, tuple)) or custom_entities: if custom_entities and isinstance(original_caption, str): original_caption = original_caption.strip(self._special_tokens) original_caption = original_caption.split(self._special_tokens) original_caption = list( filter(lambda x: len(x) > 0, original_caption)) original_caption = [clean_label_name(i) for i in original_caption] if custom_entities and enhanced_text_prompts is not None: caption_string, tokens_positive = self.to_enhance_text_prompts( original_caption, enhanced_text_prompts) else: caption_string, tokens_positive = self.to_plain_text_prompts( original_caption) # NOTE: Tokenizer in Grounding DINO is different from # that in GLIP. The tokenizer in GLIP will pad the # caption_string to max_length, while the tokenizer # in Grounding DINO will not. tokenized = self.language_model.tokenizer( [caption_string], padding='max_length' if self.language_model.pad_to_max else 'longest', return_tensors='pt') entities = original_caption else: if not original_caption.endswith('.'): original_caption = original_caption + self._special_tokens # NOTE: Tokenizer in Grounding DINO is different from # that in GLIP. The tokenizer in GLIP will pad the # caption_string to max_length, while the tokenizer # in Grounding DINO will not. tokenized = self.language_model.tokenizer( [original_caption], padding='max_length' if self.language_model.pad_to_max else 'longest', return_tensors='pt') tokens_positive, noun_phrases = run_ner(original_caption) entities = noun_phrases caption_string = original_caption return tokenized, caption_string, tokens_positive, entities
def get_positive_map(self, tokenized, tokens_positive): positive_map = create_positive_map( tokenized, tokens_positive, max_num_entities=self.bbox_head.cls_branches[ self.decoder.num_layers].max_text_len) positive_map_label_to_token = create_positive_map_label_to_token( positive_map, plus=1) return positive_map_label_to_token, positive_map
[docs] def get_tokens_positive_and_prompts( self, original_caption: Union[str, list, tuple], custom_entities: bool = False, enhanced_text_prompt: Optional[ConfigType] = None, tokens_positive: Optional[list] = None, ) -> Tuple[dict, str, Tensor, list]: """Get the tokens positive and prompts for the caption. Args: original_caption (str): The original caption, e.g. 'bench . car .' custom_entities (bool, optional): Whether to use custom entities. If ``True``, the ``original_caption`` should be a list of strings, each of which is a word. Defaults to False. Returns: Tuple[dict, str, dict, str]: The dict is a mapping from each entity id, which is numbered from 1, to its positive token id. The str represents the prompts. """ if tokens_positive is not None: if tokens_positive == -1: if not original_caption.endswith('.'): original_caption = original_caption + self._special_tokens return None, original_caption, None, original_caption else: if not original_caption.endswith('.'): original_caption = original_caption + self._special_tokens tokenized = self.language_model.tokenizer( [original_caption], padding='max_length' if self.language_model.pad_to_max else 'longest', return_tensors='pt') positive_map_label_to_token, positive_map = \ self.get_positive_map(tokenized, tokens_positive) entities = [] for token_positive in tokens_positive: instance_entities = [] for t in token_positive: instance_entities.append(original_caption[t[0]:t[1]]) entities.append(' / '.join(instance_entities)) return positive_map_label_to_token, original_caption, \ positive_map, entities chunked_size = self.test_cfg.get('chunked_size', -1) if not self.training and chunked_size > 0: assert isinstance(original_caption, (list, tuple)) or custom_entities is True all_output = self.get_tokens_positive_and_prompts_chunked( original_caption, enhanced_text_prompt) positive_map_label_to_token, \ caption_string, \ positive_map, \ entities = all_output else: tokenized, caption_string, tokens_positive, entities = \ self.get_tokens_and_prompts( original_caption, custom_entities, enhanced_text_prompt) positive_map_label_to_token, positive_map = self.get_positive_map( tokenized, tokens_positive) return positive_map_label_to_token, caption_string, \ positive_map, entities
def get_tokens_positive_and_prompts_chunked( self, original_caption: Union[list, tuple], enhanced_text_prompts: Optional[ConfigType] = None): chunked_size = self.test_cfg.get('chunked_size', -1) original_caption = [clean_label_name(i) for i in original_caption] original_caption_chunked = chunks(original_caption, chunked_size) ids_chunked = chunks( list(range(1, len(original_caption) + 1)), chunked_size) positive_map_label_to_token_chunked = [] caption_string_chunked = [] positive_map_chunked = [] entities_chunked = [] for i in range(len(ids_chunked)): if enhanced_text_prompts is not None: caption_string, tokens_positive = self.to_enhance_text_prompts( original_caption_chunked[i], enhanced_text_prompts) else: caption_string, tokens_positive = self.to_plain_text_prompts( original_caption_chunked[i]) tokenized = self.language_model.tokenizer([caption_string], return_tensors='pt') if tokenized.input_ids.shape[1] > self.language_model.max_tokens: warnings.warn('Inputting a text that is too long will result ' 'in poor prediction performance. ' 'Please reduce the --chunked-size.') positive_map_label_to_token, positive_map = self.get_positive_map( tokenized, tokens_positive) caption_string_chunked.append(caption_string) positive_map_label_to_token_chunked.append( positive_map_label_to_token) positive_map_chunked.append(positive_map) entities_chunked.append(original_caption_chunked[i]) return positive_map_label_to_token_chunked, \ caption_string_chunked, \ positive_map_chunked, \ entities_chunked
[docs] def forward_transformer( self, img_feats: Tuple[Tensor], text_dict: Dict, batch_data_samples: OptSampleList = None, ) -> Dict: encoder_inputs_dict, decoder_inputs_dict = self.pre_transformer( img_feats, batch_data_samples) encoder_outputs_dict = self.forward_encoder( **encoder_inputs_dict, text_dict=text_dict) tmp_dec_in, head_inputs_dict = self.pre_decoder( **encoder_outputs_dict, batch_data_samples=batch_data_samples) decoder_inputs_dict.update(tmp_dec_in) decoder_outputs_dict = self.forward_decoder(**decoder_inputs_dict) head_inputs_dict.update(decoder_outputs_dict) return head_inputs_dict
[docs] def forward_encoder(self, feat: Tensor, feat_mask: Tensor, feat_pos: Tensor, spatial_shapes: Tensor, level_start_index: Tensor, valid_ratios: Tensor, text_dict: Dict) -> Dict: text_token_mask = text_dict['text_token_mask'] memory, memory_text = self.encoder( query=feat, query_pos=feat_pos, key_padding_mask=feat_mask, # for self_attn spatial_shapes=spatial_shapes, level_start_index=level_start_index, valid_ratios=valid_ratios, # for text encoder memory_text=text_dict['embedded'], text_attention_mask=~text_token_mask, position_ids=text_dict['position_ids'], text_self_attention_masks=text_dict['masks']) encoder_outputs_dict = dict( memory=memory, memory_mask=feat_mask, spatial_shapes=spatial_shapes, memory_text=memory_text, text_token_mask=text_token_mask) return encoder_outputs_dict
[docs] def pre_decoder( self, memory: Tensor, memory_mask: Tensor, spatial_shapes: Tensor, memory_text: Tensor, text_token_mask: Tensor, batch_data_samples: OptSampleList = None, ) -> Tuple[Dict]: bs, _, c = memory.shape output_memory, output_proposals = self.gen_encoder_output_proposals( memory, memory_mask, spatial_shapes) enc_outputs_class = self.bbox_head.cls_branches[ self.decoder.num_layers](output_memory, memory_text, text_token_mask) cls_out_features = self.bbox_head.cls_branches[ self.decoder.num_layers].max_text_len enc_outputs_coord_unact = self.bbox_head.reg_branches[ self.decoder.num_layers](output_memory) + output_proposals # NOTE The DINO selects top-k proposals according to scores of # multi-class classification, while DeformDETR, where the input # is `enc_outputs_class[..., 0]` selects according to scores of # binary classification. topk_indices = torch.topk( enc_outputs_class.max(-1)[0], k=self.num_queries, dim=1)[1] topk_score = torch.gather( enc_outputs_class, 1, topk_indices.unsqueeze(-1).repeat(1, 1, cls_out_features)) topk_coords_unact = torch.gather( enc_outputs_coord_unact, 1, topk_indices.unsqueeze(-1).repeat(1, 1, 4)) topk_coords = topk_coords_unact.sigmoid() topk_coords_unact = topk_coords_unact.detach() query = self.query_embedding.weight[:, None, :] query = query.repeat(1, bs, 1).transpose(0, 1) if self.training: dn_label_query, dn_bbox_query, dn_mask, dn_meta = \ self.dn_query_generator(batch_data_samples) query = torch.cat([dn_label_query, query], dim=1) reference_points = torch.cat([dn_bbox_query, topk_coords_unact], dim=1) else: reference_points = topk_coords_unact dn_mask, dn_meta = None, None reference_points = reference_points.sigmoid() decoder_inputs_dict = dict( query=query, memory=memory, reference_points=reference_points, dn_mask=dn_mask, memory_text=memory_text, text_attention_mask=~text_token_mask, ) # NOTE DINO calculates encoder losses on scores and coordinates # of selected top-k encoder queries, while DeformDETR is of all # encoder queries. head_inputs_dict = dict( enc_outputs_class=topk_score, enc_outputs_coord=topk_coords, dn_meta=dn_meta) if self.training else dict() # append text_feats to head_inputs_dict head_inputs_dict['memory_text'] = memory_text head_inputs_dict['text_token_mask'] = text_token_mask return decoder_inputs_dict, head_inputs_dict
[docs] def loss(self, batch_inputs: Tensor, batch_data_samples: SampleList) -> Union[dict, list]: text_prompts = [ data_samples.text for data_samples in batch_data_samples ] gt_labels = [ data_samples.gt_instances.labels for data_samples in batch_data_samples ] if 'tokens_positive' in batch_data_samples[0]: tokens_positive = [ data_samples.tokens_positive for data_samples in batch_data_samples ] positive_maps = [] for token_positive, text_prompt, gt_label in zip( tokens_positive, text_prompts, gt_labels): tokenized = self.language_model.tokenizer( [text_prompt], padding='max_length' if self.language_model.pad_to_max else 'longest', return_tensors='pt') new_tokens_positive = [ token_positive[label.item()] for label in gt_label ] _, positive_map = self.get_positive_map( tokenized, new_tokens_positive) positive_maps.append(positive_map) new_text_prompts = text_prompts else: new_text_prompts = [] positive_maps = [] if len(set(text_prompts)) == 1: # All the text prompts are the same, # so there is no need to calculate them multiple times. tokenized, caption_string, tokens_positive, _ = \ self.get_tokens_and_prompts( text_prompts[0], True) new_text_prompts = [caption_string] * len(batch_inputs) for gt_label in gt_labels: new_tokens_positive = [ tokens_positive[label] for label in gt_label ] _, positive_map = self.get_positive_map( tokenized, new_tokens_positive) positive_maps.append(positive_map) else: for text_prompt, gt_label in zip(text_prompts, gt_labels): tokenized, caption_string, tokens_positive, _ = \ self.get_tokens_and_prompts( text_prompt, True) new_tokens_positive = [ tokens_positive[label] for label in gt_label ] _, positive_map = self.get_positive_map( tokenized, new_tokens_positive) positive_maps.append(positive_map) new_text_prompts.append(caption_string) text_dict = self.language_model(new_text_prompts) if self.text_feat_map is not None: text_dict['embedded'] = self.text_feat_map(text_dict['embedded']) for i, data_samples in enumerate(batch_data_samples): positive_map = positive_maps[i].to( batch_inputs.device).bool().float() text_token_mask = text_dict['text_token_mask'][i] data_samples.gt_instances.positive_maps = positive_map data_samples.gt_instances.text_token_mask = \ text_token_mask.unsqueeze(0).repeat( len(positive_map), 1) if self.use_autocast: with autocast(enabled=True): visual_features = self.extract_feat(batch_inputs) else: visual_features = self.extract_feat(batch_inputs) head_inputs_dict = self.forward_transformer(visual_features, text_dict, batch_data_samples) losses = self.bbox_head.loss( **head_inputs_dict, batch_data_samples=batch_data_samples) return losses
[docs] def predict(self, batch_inputs, batch_data_samples, rescale: bool = True): text_prompts = [] enhanced_text_prompts = [] tokens_positives = [] for data_samples in batch_data_samples: text_prompts.append(data_samples.text) if 'caption_prompt' in data_samples: enhanced_text_prompts.append(data_samples.caption_prompt) else: enhanced_text_prompts.append(None) tokens_positives.append(data_samples.get('tokens_positive', None)) if 'custom_entities' in batch_data_samples[0]: # Assuming that the `custom_entities` flag # inside a batch is always the same. For single image inference custom_entities = batch_data_samples[0].custom_entities else: custom_entities = False if len(text_prompts) == 1: # All the text prompts are the same, # so there is no need to calculate them multiple times. _positive_maps_and_prompts = [ self.get_tokens_positive_and_prompts( text_prompts[0], custom_entities, enhanced_text_prompts[0], tokens_positives[0]) ] * len(batch_inputs) else: _positive_maps_and_prompts = [ self.get_tokens_positive_and_prompts(text_prompt, custom_entities, enhanced_text_prompt, tokens_positive) for text_prompt, enhanced_text_prompt, tokens_positive in zip( text_prompts, enhanced_text_prompts, tokens_positives) ] token_positive_maps, text_prompts, _, entities = zip( *_positive_maps_and_prompts) # image feature extraction visual_feats = self.extract_feat(batch_inputs) if isinstance(text_prompts[0], list): # chunked text prompts, only bs=1 is supported assert len(batch_inputs) == 1 count = 0 results_list = [] entities = [[item for lst in entities[0] for item in lst]] for b in range(len(text_prompts[0])): text_prompts_once = [text_prompts[0][b]] token_positive_maps_once = token_positive_maps[0][b] text_dict = self.language_model(text_prompts_once) # text feature map layer if self.text_feat_map is not None: text_dict['embedded'] = self.text_feat_map( text_dict['embedded']) batch_data_samples[ 0].token_positive_map = token_positive_maps_once head_inputs_dict = self.forward_transformer( copy.deepcopy(visual_feats), text_dict, batch_data_samples) pred_instances = self.bbox_head.predict( **head_inputs_dict, rescale=rescale, batch_data_samples=batch_data_samples)[0] if len(pred_instances) > 0: pred_instances.labels += count count += len(token_positive_maps_once) results_list.append(pred_instances) results_list = [results_list[0].cat(results_list)] is_rec_tasks = [False] * len(results_list) else: # extract text feats text_dict = self.language_model(list(text_prompts)) # text feature map layer if self.text_feat_map is not None: text_dict['embedded'] = self.text_feat_map( text_dict['embedded']) is_rec_tasks = [] for i, data_samples in enumerate(batch_data_samples): if token_positive_maps[i] is not None: is_rec_tasks.append(False) else: is_rec_tasks.append(True) data_samples.token_positive_map = token_positive_maps[i] head_inputs_dict = self.forward_transformer( visual_feats, text_dict, batch_data_samples) results_list = self.bbox_head.predict( **head_inputs_dict, rescale=rescale, batch_data_samples=batch_data_samples) for data_sample, pred_instances, entity, is_rec_task in zip( batch_data_samples, results_list, entities, is_rec_tasks): if len(pred_instances) > 0: label_names = [] for labels in pred_instances.labels: if is_rec_task: label_names.append(entity) continue if labels >= len(entity): warnings.warn( 'The unexpected output indicates an issue with ' 'named entity recognition. You can try ' 'setting custom_entities=True and running ' 'again to see if it helps.') label_names.append('unobject') else: label_names.append(entity[labels]) # for visualization pred_instances.label_names = label_names data_sample.pred_instances = pred_instances return batch_data_samples